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Abstract:  

Background:  

COVID-19 appeared in Wuhan, China in December 2019, and since then it has 
immediately become a serious public health problem worldwide. No specific medicine 
against COVID-19 has been found until now. However, mortality risk in patients could 
potentially be predicted before they transmit to critically ill. 

Methods:  

We screened the electronic records of 2,799 patients admitted in Tongji Hospital from 
January 10th to February 18th, 2020. There were 375 discharged patients including 201 
survivors. We built a prognostic prediction model based on XGBoost machine learning 
algorithm and then tested 29 patients (included 3 patients from other hospital) who were 
cleared after February 19th.  

Results: 

The mean age of the 375 patients was 58.83 years old with 58.7% of males. Fever was the 
most common initial symptom (49.9%), followed by cough (13.9%), fatigue (3.7%), and 
dyspnea (2.1%). Our model identified three key clinical features, i.e., lactic dehydrogenase 
(LDH), lymphocyte and High-sensitivity C-reactive protein (hs-CRP), from a pool of more 
than 300 features. The clinical route is simple to check and can precisely and quickly assess 
the risk of death. Therefore, it is of great clinical significance. 
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Conclusion: 

The three indices-based prognostic prediction model we built is able to predict the 
mortality risk, and present a clinical route to the recognition of critical cases from severe 
cases. It can help doctors with early identification and intervention, thus potentially reducing 
mortality. 
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Introduction 

The outbreaks of COVID-19 epidemic has caused worldwide health concerns since 
December, 2019. It has been shown in literature [1, Error! Reference source not found.] 
that 26.1-32.0% of COVID-19 patients would develop to critically ill cases. Moreover, Yang 
et al. [Error! Reference source not found.] reported that the fatal rate of critically ill 
patients is astonishingly 61.5%. However, it is arduous to identify these patients manually 
from the infectious crowds. Hence, it is becoming an urgent yet challenging mission to 
identify the critically ill cases form the infectious crowds using clinical data with the 
assistance of machine learning approaches. Such a developed prognostic model could offer 
early treatment to critical patients, thus potentially reducing mortality.  

Methods 

Data resources 

For this retrospective, single-center study, we collected the electronic records of 2,779 
validated or suspected COVID-19 patients from January 10th to February 18th, 2020 at 
Tongji Hospital in Wuhan, China. We distilled epidemiological, demographic, clinical, 
laboratory, drugs, nursing record, and outcome data from electronic medical record. The 
clinical outcomes were followed up to February 18th.The study was approved by the Tongji 
Hospital Ethics Committee. 

As shown in Figure 1, of the 2,779 individuals retained in our hospital, 2,259 cases were 
excluded as they were still in treatment before February 19th, 2020. Per the other 520 cases, 
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375 ones including 201 survivors have complete data materials. Pregnant or breast-feeding 
women, younger than 18 years old were excluded. 

After February 19th, 2020, there were 26 new cleared severe patients, which were thus 
picked for the test together with other 3 cleared severe patients from Ying Cheng People’s 
Hospital for testing. Note that all types of patients were included as samples for the study, 
whereas only severe patients were selected for testing. 

 

Figure 1. A flowchart of patient enrollment. 

Case definitions 

We apply the following diagnostic criteria [4]: 

1) Epidemiological history: Traveled or lived in Wuhan within 14 days before onset; Had 
contact with patients with fever and respiratory symptoms from Wuhan within 14 days before 
onset; Had contact with COVID-19 patients (positive for COVID-19 nucleic acid) within 14 
days before onset; Or part of a familial cluster of onsets; 

2) Clinical manifestations: Fever and/or respiratory symptoms; Normal or decreased total 
white blood cell count or decreased lymphocyte count during early stage of onset; Typical 
imaging features. 

Subjects that meet any one epidemiological history or meet two clinical manifestations 
without epidemiological history are defined as suspected cases. Suspected cases with one of 
the following etiological evidence are defined as validated cases: 1) SARS-CoV-2 nucleic 
acid is positive in respiratory or blood samples detected by RT-PCR; 2) virus sequence 
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detected in respiratory or blood samples shares high homology with the known sequence of 
SARS-CoV-2.  

A case with one of the three following conditions is defined as critical case: 1) shock, 2) 
need mechanical ventilation and 3) admitted into ICU because of MODS. Severe case is 
defined as those who exhibit RR≥30bpm or SPO2 ≤93% on rest. 

Statistical Analysis  

The valid data after verification using Excel 2016 input was recovered, and double checked 
through SPSS 26.0 analysis data. The continuity variables of normal distribution were 
described by mean ± standard deviation, and the continuity variables of non-normal 
distribution were described by median and quartile.  

First, the general data was tested for normality. The Kolmogorov-Smirnov test (K-S test for 
short) was used to examine whether the single sample is from a particular distribution, and 
then the single sample K-S test was used to test the normality of the general data. The test 
level α=0.05, and P <0.05 indicate that the sample does not fit a normal distribution. Because 
age, total protein, albumin, and calcium content satisfy normal distribution, after testing, 
mean ± standard deviation was used to describe their concentration trend. As other continuous 
variables are non-normal distribution, median was used to describe their concentration trend. 

The performance of the model was first evaluated by assessing its predicted classification 
accuracy, and equaling the ratio of the test samples predicted correctly. The precision, 
sensitivity/recall and F1 score of each class are defined as below, in which n ∈ N represents 
the class, TP, TN, FP, and FN stand for true positive, true negative, false positive and false 
negative rates respectively: 

Precesion+ =
-.

-./0.
                                                 (1) 

Sensitivity+/Recall+ =
-.

-./09
	                                         (2)  

F1+ =
=∗.?@ABCBD+E∗F@AGHHE
.?@ABCBD+E/F@AGHHE

	.                                             (3) 

Modeling and analysis of machine learning algorithm were performed using Python. 

Machine learning model 

In this study, a supervised XGBoost classifier [5] was chosen as the predictor, due to its 
superb pattern characterization and feature selection ability. As shown in Figure 2, its 
step-by-step procedure is detailed as below. 
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Data Pre-processing: Imported patients’ data, used all clinical measurements of their last 
available date as features and set ‘survival’ and ‘death’ as labels for two classes. Used “-1” 
padding method to complement the incomplete clinical measures. 

Figure 2. Flowchart of the XGBoost machine learning algorithm. 

Model Training (Multi-tree XGBoost): Randomly split the selected two-class data into a 
training set and a validation set, according to the ratio of 7:3. Multi-tree XGBoost was trained 
with the parameters setting as the max depth with 4, the learning rate was equal 0.2, the tress 
number of estimators was set to 150, the value of the regularization parameter α was set to 1 
and the ‘subsample’ and ‘colsample_bytree’ both were set to 0.9 to prevent overfitting when 
there were many features but the sample size was not large[5]. 

Feature Selection: Key features were ranked by Multi-tree XGBoost according to their 
importance (Supplementary Figure 1). Supplementary Algorithm 1 was applied to select three 
key features. Supplementary Figure 2 shows that when the number of top features increased 
to 4, there was no performance improvement. Therefore, the number of key features was set 
to 3, Multi-tree XGBoost was trained with the parameters setting as the max depth with 4, the 
learning rate was equal 0.2 and the value of the regularization parameter α was set to 1. We 
had deleted some parameters and kept other parameters unchanged because we had selected 
only a few features here, not needing to add some of the previous parameters here to prevent 
overfitting.  

Explainable Model (Single-tree XGBoost): The XGBoost was applied for final prediction 
using only the three key features as well as setting the number of tree estimator to 1 (so that 
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the model is explainable). We further removed those patients with incomplete measurements 
for any of these three features and obtained 351 patients out of 375. XGBoost was re-trained 
with the parameter setting as the tress number of estimators was set to 1, the values of the two 
regularization parameters α and β were both set to 0, and the subsample and max features 
both were set to 1.   

Model Prediction: The trained model was used to predict sample class on the testing set. The 
predicted and ground-truth label of test set were used to calculate the standard metrics for 
prediction performance evaluation. 

Ethics Approval  

Data collection and analysis of cases and close contacts were approved by the 
Ethical Committee of Tongji Hospital, Tongji Medical College, Huazhong University 
of Science and Technology.  

Results  

Characteristics of the 375 patients 

The mean age of the 375 patients was 58.83±16.46 years old with 58.7% of males. Fever 
was the most common initial symptom (49.9%), followed by cough (13.9%), fatigue (3.7%), 
and dyspnea (2.1%). The epidemiological history included Wuhan residents (37.9%), familial 
cluster (6.4%), and health workers (only 1.9%). Of the 375 patients, 46.1% were critical 
patients.  

Table 1�Clinical characteristics of the studied patients. 
Items Value M(P25, P75) 

Age 58.83±16.46  

Sex   

male  58.7�  

female 40.3�  

Epidemiological history   

Wuhan residents 37.9�  

Contact with confirm or suspected patients 0.5�  

Familial cluster 6.4�  

Health worker 1.9�  

Contact with HUANAN seafood market 0.5�  

Undefined contact history 52.8�  

Symptoms on onset   

fever 49.9�  

cough 13.9�  

fatigue 3.7�  

Abdominal pain 1.9�  

dyspnea 2.1�  
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Chest distress 1.9�  

Muscular soreness 0.5�  

Outcomes   

survival 53.6�  

death 46.4�  

Lab test   

Lactate dehydrogenase�U/L�  268.50(196.00, 593.25) 

Lymphocytes���  14.35(4.13, 27.58) 

High-sensitivity C-reactive protein�mg/L�  25.80(1.98, 98.08) 

High-sensitivity cardiac troponin I�pg/ml�  11.50(2.40, 72.70) 

Procalcitonin (ng/ml�  0.10(0.03, 0.45) 

Urea�mmol/L�  5.40(3.80, 11.58) 

Glucose�mmol/L�  6.54(5.12, 9.99) 

Lymphocyte�×109/L�  0.99(0.52, 1.54) 

Albumin�g/L� 32.67±6.31  

NT-proBNP  286.00(56.00, 11762.00) 

Calcium 2.10±0.18  

Monocytes���  6.25(2.93, 8.90) 

Prothrombin activity  86.50(67.00, 98.00) 

Eosinophils���  0.25 (0.00, 1.50) 

Total protein  65.28±7.75  

Neutrophils(×109/L)  5.38(3.10, 11.31) 

D-D dimer quantification  0.88(0.41, 2.18) 

International Normalized Ratio  1.10(1.01, 1.31) 

White Blood Cell Count  7.93 (5.12, 13.25) 

Neutrophils(%)  77.55(61.58, 91.98) 

Identification of key features 

Using procedure specified in the Supplementary information, we first discovered that three 
key features (i.e., LDH, lymphocyte(%), hsCRP), are needed to distinguish critical patients 
from the two classes (visualization of samples is shown in Supplementary Figure 6). More 
importantly, the retrained Single-tree XGBoost algorithm outputs a clinical route (a decision 
tree in machine learning), as shown in Figure 3. It can simply be used to classify all severe 
patients:  

To validate the results, we blindly tested the decision rule in Figure 3 with 29 patients, 
whose outcomes were confirmed after February 19th. The confusion matrix of the testing data 
is shown in Supplementary Figure 2, showing that still 100% death prediction accuracy and 
90% survival prediction accuracy were achieved, respectively. To validate the model’s 
performance on the testing data, the precision, recall, F1-score and the corresponding support 
are demonstrated in Table 2. The score for survival and death prediction, accuracy, macro and 
weighted averages over all the samples are consistently larger than 0.90. It is worth noting 
that Multi-tree XGBoost and Single-tree XGBoost return the same predictions. The labels of 
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some patients are predicted wrong. Yet, the prognosis of these patients is not optimistic. One 
of the patients had been admitted to the ICU because of an endangered condition and was 
recovered after emergency rescue. The other patient was in the cerebrovascular sequelae 
period with an extremely weak condition. Although this patient is currently alive, the 
prognosis is extremely poor. 

 
Figure 3. Establishing a decision rule using three key features. Num represents the number of patients, T represents 

the number of corrected classified patients while F represents the number of misclassified patients. 

Table 2�Performance of the proposed algorithm on testing dataset.  

 Precision Recall F1-score Support 

Survival 1.00 0.83 0.91 12 

Death 0.89 1.00 0.94 17 

accuracy     0.93 29 

macro avg 0.95 0.92 0.93 29 

weighted avg 0.94 0.93 0.93 29 

Discussion 

Coronavirus is prevalent in China and all over the world, with high morbidity and 

high mortality in critically ill patients. According to the recent reports [2�6], old patients 

are more prone to be infected by COVID-19, especially for those with underlying diseases. 
The severity of patients is applying great pressure on the shortage of intensive care resources. 
Unfortunately, so far, specific clinical features of COVID-19 pneumonia in different 
critical stages remain still unclear. Under this circumstance, novel approaches based 
on feature data to help clinicians to identify high-risk patients as early as possible, to 
improve the prognosis of patients and to reduce the mortality of critically ill patients, 
are highly demanded and are of clinical significance. In this study, we used XGBoost 
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machine learning method to establish a predictive model for early identification of 
critically ill patients based on the epidemiological and clinical data of 375 patients 
with COVID-19 infection in Tongji Hospital of Wuhan. The working mechanism of 
the XGBoost-based machine learning model is that it is detailed with quantitatively 
sorting clinical features accordingly to their criticality, then sorting out revealed 
features, and giving the interpretable clinical route. Inspiringly, with the assistance of 
such a model, we have extracted merely three key clinical features from all the 300+ features, 
i.e., LDH, hs-CRP and lymphocyte, which can precisely predict the survival with more than 
90% accuracy. These three indexes correspond to the most important factors such as 
cell injury, cellular immunity and inflammation in the pathophysiological progress of 
COVID-19.  

The significance of our work is three-fold. First, instead of merely providing the high-risk 
factors as the earlier published articles, the present study has provided a general operable 
formula to precisely and quickly quantify the risk of death, representing a significant progress 
in clinical practice. For example, for patients with SPO2 below 93%, the respiratory support 
therapy include intranasal catheterization of oxygen, oxygen supply through mask, high 
flow oxygen supply through nasal catheter, non-invasive ventilation support, invasive 
ventilation support, and ECMO. However, the routine sequential usage of the oxygen therapy 
usually leads to unsatisfactory therapeutic effects in severe patients. Significantly, our 
predictive model is likely to identify high-risk patients before irreversible lesions 
occur. By using appropriate respiratory support therapy as soon as possible, we may be 
able to completely improve the prognosis. Second, these three revealed key features can 
be conveniently collected by any hospital, thus helping bypass large streams of patients 
crowded in top-tier hospitals. As a result, our model can substantially alleviate the pressure 
caused by the shortage of medical resources and facilitates the forming of hierarchical 
medical care system of COVID-19. Third, the millisecond machine learning speed of the 
present model could improve the efficiency of frontline doctors in term of classifying the 
severity and predicting the fatal development trend, thereby greatly releasing the heavy work 
load of doctors. 

The most common fatal complication of COVID-19 is acute respiratory distress 
syndrome (ARDS). Although the pathological features of COVID-19 are very similar 
to those by acute respiratory distress syndrome(SARS) and Middle East respiratory 
distress syndrome (MERS)[7], it is known from the latest systematic anatomy that 
pulmonary fibrosis and consolidation by COVID-19 patients are not as serious as 
those caused by SARS, but the exudative reaction is more severe than that of SARS[8]. 
Histological examination of COVID-19 showed bilateral diffuse alveolar damage with 
cellular fibro-myxoid Exudates, evident desquamation of pneumocytes and hyaline membrane 
formation [7] and then interstitial fibrosis.  

The increase of LDH reflects tissue/cell destruction and is regarded as a common sign of 
tissue/cell damage. Serum LDH has been identified as an important biomarker for the activity 
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and severity of Idiopathic Pulmonary Fibrosis (IPF)[9]. In patients with severe pulmonary 
interstitial disease, the increase of LDH is significant and is one of the most important 
prognostic markers of lung injury[9]. For the critically ill patients with COVID-19, the rise 
of LDH level indicates an increase of the activity and extent of lung injury.  

Our analysis showed that higher serum hs-CRP could be used to predict the risk of 
death in severe COVID-19 patients. The increase of hs-CRP, an important marker for 
poor prognosis in ARDS [10, 11], reflects the persistent state of inflammation [12]. 
The result of this persistent inflammatory response is large gray-white lesions in the 
lungs of patients with COVID-19 (what was seen in the autopsy) [8]. In the tissue 
section, a large amount of sticky secretion was also seen overflowing from the alveoli 
[8]. 

Our results also suggested that lymphocytes play vital role in forecasting of progression 
from mild to critically ill and may serve as a potential therapeutic target. The hypothesis is 
supported by the results of clinical studies [2�6]. Moreover, lymphopenia is a common 
feature in the patients with COVID-19 and might be a critical factor associated with disease 
severity and mortality[Error! Reference source not found.]. The injured alveolar epithelial 
cells could induce the infiltration of lymphocytes, leading to a persistent lymphopenia as 
SARS-CoV and MERS-CoV did, given that they share the similar alveolar penetrating and 
antigen presenting cells (APC) impairing pathway [14,15]. A biopsy study has provided 
strong evidence that the counts of peripheral CD4 and CD8 T cells were substantially reduced, 
while their status was hyperactivated [Error! Reference source not found.]. Also, Jing and 
colleagues reported the lymphopenia is mainly related to the decrease of CD4+ and CD8+ T 
cells [16]. Thus, it is likely that lymphocytes play distinct roles in COVID-19, which 
deserves further investigation.  

Nevertheless, this study has several notable limitations. First of all, since the proposed 
machine learning method is purely data driven, its model may vary given a different set of 
training and validation dataset. Given the limit number of samples in this study, we strike a 
balance between model complexity and performance. Yet the whole procedure should follow 
when more data is available. Secondly, this is a single-centered, retrospective study, which 
provides a preliminary assessment of the clinical course and outcome of severe patients. 
Although this database covers more than 3,000 patients, most clinical outcomes have not yet 
been released. As we have a pool of more than 300 clinical measurements, here our modeling 
principle is a trade-off between the minimal number of features and the capacity of good 
prediction. Obviously, if a larger number of features are selected, the model may perform 
better. In this regard, we look forward to subsequent large sample and multicenter studies. 

In summary, in this study, we have identified three indicators (LDH, hs-CRP, and 
lymphocytes) and even found the early warning thresholds (LDH: 365U/l, hs-CRP: 41.2mg/L, 
and lymphocytes%: 14.7%) for COVID-19 prognostic prediction and developed an XGBoost 
machine learning-based prognostic model that can precisely predict the survival rates of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

(which was not peer-reviewed) The copyright holder for this preprint .https://doi.org/10.1101/2020.02.27.20028027doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.27.20028027
http://creativecommons.org/licenses/by-nc-nd/4.0/


severe patients with more than 90% accuracy, enabling the early detection, the early 
intervention and the reduction of mortality in high-risk patients with COVID-19. From 
technical point of view, this work helps pave the way for using machine learning method in 
COVID-19 prediction and diagnosis in the triage of the large scale explosive epidemic 
COVID-19 cases. Further studies are needed to consider more clinical confounding factors 
and to increase the sample size for further refining our model.  
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Supplementary Information 
 
In the Supplementary Information, we shall illustrate data analysis using a step-by-
step procedure below: 
 
Step1. Obtain the Top10 features using 375 samples with all features:  
 
Supplementary Figure 1: Top ten key clinical features that are ranked according to its 
importance in the XGBoost algorithm.  
 

 
XGBoost Trees with 375 samples (all features): 

XGBoost is trained with the parameters setting as the max depth with 4, the learning 
rate is equal 0.2, the tress number of estimators is set to 150, the value of the regularization 
parameter α is set to 1, the ‘subsample’ and ‘colsample_bytree’ both are set to 0.9 to 
prevent overfitting when there are many features and the sample size is not large. 
 
 
Step 2. Reduce the number of features used: 
 
Supplementary Algorithm 1:  

Algorithm 1 Feature selection 
Input: The training set of {#$%&'( ∈ *(+×-, /$%&'( ∈ [0,1]4+}	, the validation set of 

{#7&8'9&$':( ∈ *
(;×-, /7&8'9&$':( ∈ [0,1]

4;} ,where <= and	<> are the number of samples 
in the training set and validation set, respectively , m is the number of features, and 
/$%&'( , /7&8'9&$':(	are the true labels of the training set and validation set samples, 
respectively . The all features name list ?&88 with is sort by the importance of XGBoost 
model. 

Output: The selected features name list ?@A8AB$A9C8&@$. 
Step 1 Initialization 

1) 	i	 = 0, ?1@B:%AC8&@$ = 0,	?@A8AB$A9 = [], 	?@A8AB$A9C8&@$  = [], threshold = 0. 
Step 2 Feature selection 
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Algorithm 1 Feature selection 
2) 	?@A8AB$A9C8&@$ ← 	 	?@A8AB$A9 
3) 	Add element ?GHH[i] to ?@A8AB$A9 
4) #$%&'(C@A8AB$A9 is the matrix formed by the corresponding columns of ?@A8AB$A9 in 
#$%&'(. 

5) #7&8'9&$':(C@A8AB$A9 is the matrix formed by the corresponding columns of ?@A8AB$A9 
in #7&8'9&$':(. 

Step 3 Training and Prediction 
6) Fit the {#$%&'(C@A8AB$A9, /$%&'(} with XGBoost and get the I∗(L)  
7) Predict the /N7&8'9&$':( ← I∗(#7&8'9&$':(C@A8AB$A9), where  /N7&8'9&$':( is the predicted 

labels of validation set samples. 
Step 4 Calculating the f1-scores and judgments 

8) ?1@B:%A ← ?1@B:%A(/7&8'9&$':(, /N7&8'9&$':() 
9) If (?1@B:%A − ?1@B:%AC8&@$) 	< 	threshold 
10)         Then  ?1@B:%ACYA@$ = ?1@B:%AC8&@$ and return	?@A8AB$A9C8&@$ 
11)  Else Z	 ← 	Z	 + 1 and return to Step 2 

 
 
Supplementary Figure 2: Illustration of F1 scores using Supplementary Algorithm 1.  
 

 
XGBoost Trees with 375 samples (Top-features): 

XGBoost is trained with the parameters setting as the max depth with 4, the learning 
rate is equal 0.2, the value of the regularization parameter α is set to 1. 
 
 
Step 3. The results on the Multi-tree XGBoost with Top3 features selected in Step 2 
(375 samples).  
 
Supplementary Figure 3: Confusion matrix for the testing dataset using multi-tree 
XGBoost algorithm.    
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Supplementary Table 1. Performance of the Multi-tree XGBoost algorithm on training 

dataset. 

 Precision Recall F1-score Support 

Survival 1.00 0.95 0.98 145 
Death 0.94 1.00 0.97 117 
accuracy     0.97 262 
macro avg 0.97 0.98 0.97 262 
weighted avg 0.97 0.97 0.97 262 

 
Supplementary Table 2�Performance of the Multi-tree XGBoost algorithm on 

validation dataset.  

 Precision Recall F1-score Support 

Survival 0.96 0.95 0.95 56 
Death 0.95 0.96 0.96 57 
accuracy     0.96 113 
macro avg 0.96 0.96 0.96 113 
weighted avg 0.96 0.96 0.96 113 

 
 
Step 4. Reduce number of tree to 1, which leads to Single-tree XGBoost (Because 
the samples are missing in some features, there are 24 samples with at least one 
feature missing in Top3 features. In order to obtain a better decision tree rule, we 
deleted these samples in the one-tree, so we get the 351 patient-samples.) 
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XGBoost one-tree with 351 samples (Top3 features): 
XGBoost is trained with the parameter setting as the tress number of estimators is 

set to 1, the values of the two regularization parameters α and β are both set to 0, the 
subsample and max features both are set to 1. 
 
Supplementary Figure 4: Confusion matrix for the testing dataset using Single-tree 
XGBoost algorithm.    
 

 
 

Supplementary Table 3. Performance of the proposed algorithm on training dataset 

for Single-tree XGBoost. 

 Precision Recall F1-score Support 

Survival 1.00 0.98 0.99 135 

Death 0.97 1.00 0.99 110 

accuracy   0.99 245 

macro avg 0.99 0.99 0.99 245 

weighted avg 0.99 0.99 0.99 245 

 
Supplementary Table 4�Performance of the proposed algorithm on validation 

dataset for Single-tree XGBoost.  

 Precision Recall F1-score Support 

Survival 0.95 0.96 0.96 57 

Death 0.96 0.94 0.95 49 

accuracy   0.95 106 

macro avg 0.95 0.95 0.95 106 
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weighted avg 0.95 0.95 0.95 106 

 
 
Supplementary Figure 5: Single-tree structure: 

 
 
Supplementary Figure 6: Visualization of data over three selected features. 
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