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ABSTRACT

Background: There are several prognostic models to estimate the risk of mortality after surgery for active
infective endocarditis (IE). However, these models incorporate different predictors and their perfor-
mance is uncertain.

Objective: We systematically reviewed and critically appraised all available prediction models of post-
operative mortality in patients undergoing surgery for IE, and aggregated them into a meta-model.
Data sources: We searched Medline and EMBASE databases from inception to June 2020.

Study eligibility criteria: We included studies that developed or updated a prognostic model of post-
operative mortality in patient with IE.

Methods: We assessed the risk of bias of the models using PROBAST (Prediction model Risk Of Bias
ASsessment Tool) and we aggregated them into an aggregate meta-model based on stacked regressions
and optimized it for a nationwide registry of IE patients. The meta-model performance was assessed
using bootstrap validation methods and adjusted for optimism.

Results: We identified 11 prognostic models for postoperative mortality. Eight models had a high risk of
bias. The meta-model included weighted predictors from the remaining three models (EndoSCORE,
specific ES-I and specific ES-II), which were not rated as high risk of bias and provided full model
equations. Additionally, two variables (age and infectious agent) that had been modelled differently
across studies, were estimated based on the nationwide registry. The performance of the meta-model
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was better than the original three models, with the corresponding performance measures: C-statistics
0.79 (95% CI 0.76—0.82), calibration slope 0.98 (95% CI 0.86—1.13) and calibration-in-the-large —0.05

(95% CI —0.20 to 0.11).

Conclusions: The meta-model outperformed published models and showed a robust predictive capacity
for predicting the individualized risk of postoperative mortality in patients with IE.

Protocol registration: PROSPERO (registration number CRD42020192602). Borja M. Fernandez-Felix,
Clin Microbiol Infect 2021;27:1422

© 2021 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.

Introduction

Infective endocarditis (IE) is an uncommon but severe disease
with a high mortality rate. Its current estimated incidence is three
to ten episodes per 100 000 person-years, and its in-hospital
mortality rate ranges between 15% and 40% [1,2]. Management of
IE is often complex and, the decision whether to perform surgery
remains a challenge because of the high mortality rate associated
with the procedure. For that reason, it is estimated than less than
half of the patients with surgical indication finally undergo cardiac
surgery [3]; which leads to a significantly decreased chance of
survival [4]. In this context, there has been a great interest in
modelling the prognosis of patients with IE to accurately estimate
the risk of mortality in patients undergoing surgery for IE, and to
help in the decision-making process.

Prognostic models are mathematical equations that relate
multiple variables for a particular individual to the probability of
postoperative mortality. In the last decade, several IE prognostic
models using preoperative patient-related and IE-specific factors,
have been proposed. Unfortunately, these models have not been
implemented in guidelines or are rarely applied in clinical practice.
The poor adoption of these models could be a consequence of a
shared perception of their limited validity because they have usu-
ally been built in relatively small cohorts and they usually lack
external validation. Consequently, researchers continue to develop
new models using their own data without considering previous
knowledge, which leads to a scenario with multiple prognostic
models of dubious validity. Therefore, we aimed to systematically
review and critically appraise all available prediction models for
postoperative mortality after cardiac surgery in patients with IE.
We also aimed to aggregate those models with low risk of bias into
a meta-model based on stacked regressions.

Materials and methods

The protocol for this study was registered on PROSPERO
(registration number CRD42020192602). We designed this sys-
tematic review according to the recent guidance [5,6], and reported
its results following PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) [7] and TRIPOD (Transparent
Reporting of a Multivariable Prediction Model for Individual Prog-
nosis or Diagnosis) recommendations [8,9].

Literature search

We searched Medline through Ovid and Embase through
Elsevier from inception to 1 June 2020. We conducted a literature
search to identify all potential studies for inclusion, without any
language or publication dates restriction. We used the methodo-
logical filter developed by Geersing et al. for prediction models
research in MEDLINE [10], which was adapted for EMBASE. We
added terms related to cardiac surgery and endocarditis. We further

searched bibliographic references of included articles to identify
other potential eligible studies. Complete search strings are shown
in the Supplementary material (Appendix S1).

Eligibility criteria

We included original studies that developed prognostic models,
with or without external validation, to predict the risk of post-
operative mortality after cardiac surgery in patients with IE, as well
as studies that updated previously published models. We accepted
the authors’ definition of postoperative mortality (either 30 days
and/or in-hospital mortality), but excluded models that predicted
mortality as part of a composite adverse outcome. Titles, abstracts
and full texts were screened for eligibility in pairs by three re-
viewers independently (BMFF, LVB, ACP) using EPPI-ReviEwer 4 [11]
Discrepancies were resolved by consensus.

Data extraction

Data extraction of included articles was done by three reviewers
independently (pairs from BMFF, LVB, ACP). Discrepancies were
solved by consensus. Reviewers used a standardized data extrac-
tion form based on CHARMS (CHecklist for critical Appraisal and
data extraction for systematic Reviews of prediction Modelling
Studies) [6]. We extracted data on the following items: general
information of the study, source of data, participants' characteris-
tics, outcome definition and time of occurrence, candidate pre-
dictors and analysis methods (see Supplementary material,
Appendix S2). When the completed model equation or relevant
data were not provided, we contacted the corresponding authors to
require this information.

Risk of bias assessment

We used a standardized form based on PROBAST (PRediction
model risk of Bias ASsessment Tool) [12,13] to evaluate risk of bias
(RoB) and applicability. We used the PROBAST definition of RoB.
Concerns regarding the applicability of a primary study would arise
when the population, predictors or outcomes of the study differed
from those specified in our review question. RoB and applicability
were assessed by two independent reviewers (pairs from BMEFF,
LVB, ACP). We evaluated the relevant items on the following do-
mains: participants, predictors, outcome and analysis. Each domain
was rated as a high, low or unclear RoB, and as providing high, low
or unclear concerns regarding applicability. Any discrepancies were
discussed between reviewers and resolved through discussion. The
Supplementary material provides details on critical appraisal and
applicability (Appendix S3).
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GAMES registry

We used the nationwide GAMES (Grupo de Apoyo al Manejo de
la Endocarditis infecciosa en Espana) [ 14] registry as the validation
data set, to estimate existing models' weights for the meta-model
development and its validation, and to externally validate the
previously published models. Since January 2008, all consecutive
episodes of IE in 34 Spanish hospitals were prospectively registered
in GAMES using a standardized form. Regional and local ethics
committees approved the study, and patients gave their informed
consent in each centre. For the present study, we selected all the
infective episodes (n = 1453) registered in the GAMES cohort
involving adult patients (aged >18 years) who had undergone
cardiac surgery with preoperative diagnosis of active IE. From
these, 354 (24.4%) died after surgery (273 in the first 30 days and
the remaining 81 during hospitalization). Assessment of predictors
was done in an unblinded manner (i.e. with knowledge of the
participant's outcome). Table S1 (see Supplementary material)
shows the main descriptive characteristic of patients in the vali-
dation nationwide registry.

Statistical analyses

Model aggregation was based on stacked regressions [15]. This
methodology allows the synthesis of models collated in a system-
atic review into a meta-model using a validation data set [16,17].
We did not consider for aggregation the models that did not report
the full equation or the models that were classified as high RoB.
Stacked regressions used the linear predictor of each model as a co-
variable in the meta-model, to subsequently create a linear com-
bination of model predictions. That is, the original coefficients of
each model are weighted by an independent parameter estimated
in the meta-model, so that the models with worse performance in
the validation data set are penalized more. When aggregation of
the coefficients was not possible, either because the definition of
the predictor from primary studies was too heterogeneous or
because predictors had been modelled differently in the published
models (for instance, a numerical variable treated as a continuous
predictor in one model and being categorized at different cut-
points in the others), these predictors were dropped, and were
included in the meta-model as independent covariables to re-
estimate their coefficients entirely from scratch based on the vali-
dation data set. Non-linear relationships for continuous predictors
were tested using fractional polynomials [18].

Predictors with missing data in the validation data set were
imputed under the missing at random assumption using multiple
imputation with chained equations [19]. We included all predictors
and the outcome in the imputation models to ensure compatibility
(see Supplementary material, Appendix S4). Imputations checks
were completed by looking at the distributions of imputed values to
ensure plausibility. We generated ten multiple imputed data sets
and all primary analyses were performed in each imputed data set.
Pooled parameters were estimated both in the aggregation and
validation processes using Rubin's rules [20].

The meta-model validation was assessed in terms of discrimi-
nation (i.e. through the use of the C-statistic, with values from 1
indicating perfect discrimination to 0.5 no discrimination) and
calibration (i.e. through the calibration slope and calibration-in-
the-large (CITL), with 1 and 0 as ideal values, respectively; as well
as with calibration plots). Calibration plots represent the average
predicted probability for risk groups categorized using deciles of
predicted probability against observed proportion in each group,
and fitting a Lowess smoother to show calibration across the entire
range of predicted probabilities at the individual-level [21,22]. For
the calibration plots we used the average predicted probabilities for

individuals by pooling the imputed data sets using Rubin's rules
[20]. Because the meta-model was optimized to the validation data
set, we assessed its optimism-corrected performance measures by
applying bootstrap validation with 500 replicates. As sensitivity
analyses, we tested all model performance regardless of their
critical appraisal. In addition, the meta-model performance was
assessed only for 30-day mortality to investigate the meta-model
robustness. To facilitate the use of the model, an online version of
the prognostic tool was implemented in Evibencio (https://www.
evidencio.com/). All analyses were performed using Stara soft-
ware version 16 [23] (see Supplementary material, Appendix S5).

Results
Search results and study selection

We retrieved 4862 titles through our systematic search
combining Medline and Embase. From these, 684 duplicate refer-
ences were identified. Of 4178 titles assessed by title and abstract,
34 studies were retained for full-text screening, and two additional
studies were detected in the bibliographic references of these ar-
ticles. Nine studies describing 11 prediction models met the in-
clusion criteria (Fig. 1 and see Supplementary material, Table S2).

Source of data and participants

All included prognostic model development studies were pub-
lished between 2011 and 2018. Six used data from a study cohort
(three of them from a single centre [24—26] and three from mul-
tiple centres [27—29]); two studies used data from multicentre
registries [30,31]; and one study used data from both a multicentre
cohort and a local clinical registry [32]. Eight studies used data from
patients in Europe (Spain, Italy, France or Portugal) and one from
patients in North America. Participants were recruited between
1980 and 2015 (see Supplementary material, Table S3).

Outcomes

Three models were developed to predict any death occurring
before discharge or within 30 days of surgery [24,26,30], five
models to predict any death occurring before discharge
[25,29,31,32], and the remaining three as death within 30 days of
surgery [27,28]. The incidence of deaths varied between 8.2% and
29.2% (Table 1).

Predictors

The number of candidate predictors considered in the models
ranged from 15 to 57 and included patient-, clinical-, surgery- and
IE-related factors. The number of parameters retained in the final
models ranged from 2 to 15 (Table 1). The most common factors
were critical preoperative state (n = 9), renal failure (n = 7), age
(n = 6), New York Heart Association classification of functional
status (n = 6), paravalvular complications (n = 6) and infection
aetiology (n = 5). The predictor definitions and the models’'
composition are shown in the Supplementary material (Tables S4
and S5).

Model development and presentation

Sample sizes for model development varied between 128 and
13 617 patients, and the number of events ranged from 21 to 1117.
Only two models from the same study adequately informed the
handling of missing data [28], and these used complete data ana-
lyses. Logistic regression analysis was the most common modelling
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!

}

In-hospital or 30 days mortality
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In-hospital mortality
5 models

30 days mortality
3 models

Fig. 1. PRISMA flowchart of study inclusions and exclusions.

technique (n = 9), while logistic mixed effects [27] and logistic
Generalized Estimating Equation models [30] were only used in
one model development each. Nine models used univariable ana-
lyses to select the candidate predictors. In nine out of eleven
models the number of events per parameter assessed for inclusion
in the final model was lower than the minimum required for
development of a new prediction model, based on the sample size
estimation proposed by Riley et al. [33,34] (see Supplementary
material, Table S6). The method of predictor selection during
multivariable modelling was backward selection in three models
[25,32], stepwise selection in two models [29,31], and an automatic
algorithm based on Akaike information criteria in multiple boot-
strap samples in the other two models, with predictors selected in
at least 70% of the bootstrapped samples being included in the final
model [28]. Four models did not provide information about the
method used to select predictors (Table 1).

In seven out of 11 models the authors omitted the complete
model equation (in five of them corresponding authors did not
respond when were asked for further details) (see Supplementary
material, Table S7). Nine models were presented as a scoring sys-
tem, and two of them included nomograms.

Model performance

The model performance was assessed in terms of discrimina-
tion through the C-statistic in all models. Nevertheless calibration
was often wrongly assessed using the Hosmer—Lemeshow test
[35] in six models. Only three models [26,28] used calibration
slopes and CITL. Eight models were internally validated: three

models were evaluated by bootstrapping with correction for
optimism [27,28], one was assessed through the 0.632 bootstrap
method [25], two used temporal split samples [32] and two used
random split samples [29,30]. Three models only estimated the
apparent performance [24,26,31]. Three models were externally
validated in the same development study using very small sample
sizes, with only 18 events in the Olmos et al. model [29] and 21 in
the Gatti et al. models [32]. Clinical utility of the models was never
assessed.

Risk of bias

The RoB was high in eight models, unclear in one [27] and low in
the remaining two [28] (Table 1, see Supplementary material,
Table S8 and Fig. S1). Two of the eight models with high RoB scored
at ‘high risk’ in the participants domain. Eight models scored at
‘high risk’ in the analysis domain. Most of the models had small
sample sizes and even the number of events per parameter was
close to 1 in several models, increasing the risk of overfitting [34].
Many studies decided model predictors based on univariable
analysis, three reported only the apparent performance and two
used random splitting validation. The calibration was sub-optimally
assessed in all models classified as high RoB, with most of them
using the Hosmer—Lemeshow test.

Derivation of the meta-model

The eight models with high RoB were excluded from the sta-
tistical synthesis so that only the EndoScore, Specifics EuroSCORE-I
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Table 1
Models' characteristics

" Selecti f Selecti Critical
Author, Year Modelling Sample Events Predictors EPCP/ :a?\cdilg:t: zfef?"I;n Type of Performance appraisal
Model name method size n (%) Cand. Final EPFP predictors predictors validation measures m
In-hospital or 30 days mortality
De Feo, 2012 24 Logistic 440 40 19 6 2.1/ Univariable na Int: Apparent Disc: C=0.88 (0.82;0.93) | RoB. [ = ? '+ [ =
De Feo score regression (9.1) 6.7 (p-value <0.05) i Ext: n.a. Cal: HL Test App. =+ [+
- Univariable and Int: Random Split N RoB. — +  +  —
(0) - X
Ssseore Tepesson 7 (a1 G peiewsts e Oaoevaon QRGO
8 ) ! model variables Ext:n.a. : P App. [h
i (26) isti : isc: C = . RoB. ? + + | —
Madeira 2016 LOgISt!C 128 21 15 2 1.4/ Univariable na. Int: Apparent Disc: C=0.87 (0.79;0.94)
- regression (16.4) 10.5 Ext: n.a. Cal: Slope; CITL App. ?  + +
In-hospital mortality
Gatti 2017a 32 Logistic 361 56 57 5 1.0/ Univariable Backward Int: 0.632 Bootstrap Disc: C=0.72 (0.64;0.78) | RoB. "+ 4 '+ =
AEPEI score regression (15.5) 112 (p-value<0.1) Ext: (n=161; e=21) Cal: HL Test App. + 2 |+
Gatti 2017a 32 Logistic 361 56 57 3 1.0/ Univariable Backward Int: 0.632 Bootstrap Disc: C=0.69 (0.61;0.76) | RoB. '+ '+ '+ /=
Alternate AEPEI score regression (15.5) 11.2 (p-value <0.1) Ext: (n=161; e=21) Cal: HL Test App. + + +
i (25) isti ivari 3 isc: C = . RoB. + + + =
Gatti 2017b Loglst!c 138 28 56 5 0.5/ Univariable Backward Int: 0.632 Bootstrap Disc: C = 0.83 (0.75;0.89)
ANCLA score regression (20.3) 5.6 (p-value <0.1) Ext: n.a. Cal: HL Test App. + + +
Martinez-Sellés 2014 (31 Logistic 437 106 na 7 na./ Univariable Stepwise Int: Apparent Disc: C=0.84 (0.79;0.88) | RoB. '+ '+ '+ =
PALSUSE regression (24.3) - 15.1  (p-value<0.1) P Ext: n.a. Cal: HL Test App. + + +
e Univariable (p- Int: Random Split Disc: C=0.76 (0.64;0.88) | RoB. = + + +  —
ol 2017 @) Logist 124 3.4, . " . .
RI;‘:ES re orgelsssil;n 424 (29.2) 37 8 15 é value < 0.1) and Stepwise  (D:66%/V:33%) Cal: HL Test; Calibration
8 B ) clinically relevant Ext: (n=204; e=18) plot App. [+ [+ 4
30 days mortality
Logisti Disc: C=0.85 (0.84;0.86
Di Mauro 2017 27 ogistic 298 9.3/ Univariable Internal: Bootstrap sc ( ’ ) |RoB. 2 [+ + 2
EndoSCORE mixed effect 2,715 (11.0) 32 15 199 (p-value <0.2) n.a. External: n.a Cal: CITL and slope vs. 5
regression . ) P . o the ideal values App. 7 [+ +
Fernandez-Hidalgo 2018 (28 Logistic 208 8.0/ Variables n ES Int: Bootstrap Disc: C=0.77(074,081) | RoB. |+ |+ + |+
Specific £5-1 regression 779 (26.7) 26 10 208 and specific IE Bootstrap Ext:n.a Cal: Slope = 0.93 5
P 8 " - risk factor ‘na CITL =-0.06 Acp- NS
Fernandez-Hidalgo 2018 (22 Logistic 208 7.7/ VariablesinEs-l Int: Bootstrap Disc: C=077(073,0.81) | RoB. |+  + [+ |+
Specific ES-11 N 779 (26.7) 27 9 231 and specific IE Bootstrap & Cal: Slope = 0.93
pecific regression A . risk factor xt: n.a. CITL= -0.05 App.  + + +

STS, Society of Thoracic Surgeons; AEPEI, Association pour I'Etude et la Prevention de 'Endocadite Infectieuse; ANCLA, Anemia, NYHA class IV, critical state, large intracardiac
destruction, and surgery on thoracic aorta; PALSUSE, prosthetic valve, age>70, large intracardiac destruction, Staphylococcus spp, urgent surgery, sex [female], Euro-
SCORE>10; RISK-E, Risk-Endocarditis; ES, EuroSCORE; GEE, Generalized Estimating Equation; n, number of events; Cand, number of candidate predictors assessed; EPCP,
events per candidate predictor; EPFP, events per final predictor; Critical appraisal domains (P, participants; Pr, predictors; O, outcome; A, analysis); n.a., not available; Int,
Internal validation (D, development cohort; V, validation cohort); Ext, external validation (n, sample size; e, number of events); Disc, Discrimination; Cal, calibration; HL,
Hosmer-Lemeshow; CITL, calibration-in-the-large; RoB, Risk of Bias; App, applicability. +, Low RoB or low concern for applicability; —, High RoB or high concern for appli-

cability; ?, Unclear RoB or applicability.

(Specific ES-I) and EuroSCORE-II (Specific ES-II) models were
aggregated in the meta-model. The model developed by Di Mauro
et al. (EndoSCORE) [27] included 15 parameters, whereas the other
two (Specific ES-I and Specific ES-II) developed by Fernandez-Hi-
dalgo et al. [28], presented ten and nine parameters, respectively,
from the EuroSCORE models predictors [36,37] and IE-related fac-
tors (Table 2 and see Supplementary material, Table S7). The
dependent variable for the meta-model was mortality (either 30-
day or in-hospital).

To construct the meta-model, we first calculated the linear
predictors from EndoSCORE, Specific ES-I and Specific ES-II for each
observation in the validation data set, after dropping the parame-
ters for age and infection aetiology because these variables were
modelled differently in the different studies. Subsequently, we
adjusted the meta-model using a logistic regression model, which
incorporated the linear predictors as co-variables, to estimate the
models' weights for aggregation, as well as the predictors for age
(treated as continuous) and infection aetiology (categorized into
three groups: Staphylococcus spp., fungi and other microorganisms)
to re-estimate the coefficients from scratch. The meta-model
included the predictors considered in at least one of the three
original models. These were patient-related factors (age, gender,
renal failure, prior cardiac surgery, chronic pulmonary disease,
pulmonary hypertension and left ventricular ejection fraction),
clinical presentation-related factors (critical preoperative state,
New York Heart Association classification of functional status),
surgery-related factors (presence of paravalvular complications
(abscess and/or fistulae), urgency of procedure and number of
treated valves/prostheses) and finally IE-related factors (valve
location and infection aetiology) (see Supplementary material,

Table S5). We have developed an online calculator to allow a simple
and effective use of the meta-model (https://www.evidencio.com/
models/show/2498). The magnitude of the associations of the
predictive factors with mortality is shown in Table 2 and the
complete meta-model equation is given in the Supplementary
material (Box S1).

Validation of the models

The three prediction models considered for aggregation and the
meta-model were validated in the GAMES registry. The C-statistics
and their 95% confidence intervals (95% CI) for the published
models were: 0.759 (95% CI 0.731—0.788) for EndoSCORE, 0.758
(95% CI 0.731-0.786) for Specific ES-I and 0.762 (95% CI
0.735—0.789) for Specific ES-II. The optimism adjusted C-statistic
for the meta-model was 0.79 (95% CI1 0.76—0.82) (Fig. 2). Calibration
slopes were <1 for all published models: 0.80 (95% CI 0.69—0.92)
for EndoScore, 0.82 (95% CI 0.70—0.94) for Specific ES-I and 0.76
(95% CI 0.65—0.87) for Specific ES-II. CITL was 0.58 (95% CI
0.44—0.71) for EndoSCORE, 0.62 (95% CI 0.48—0.76) for Specific ES-
II and —0.02 (95% CI —0.16 to 0.11) for Specific ES-I. Optimism
adjusted calibration measures for the meta-model were 0.98 (95%
CI 0.86—1.13) for the slope and —0.05 (95% CI —0.20 to 0.11) for CITL
(Fig. 2). The calibration plots for the three previously published
models and the meta-model are shown in Fig. 3.

Sensitivity analysis showed that the meta-model had better
overall performance than all published models regardless of their
quality assessment (see Supplementary material, Fig. S2). More-
over, even though the meta-model was not fitted for the 30-day
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Table 2
Coefficients and odds ratios of the meta-model and the prediction models used for aggregation

Predictors Original models Aggregated model
EndoSCORE Sp. ES-1 Sp. ES-II Meta-model®
;)(1] 1l\/l7auro Ferndndez-Hidalgo 2018 Ferndndez-Hidalgo 2018 Coefficient OR
(95% CI) (95% CI)

Intercept —2.60 -3.13 —4.21 —5.00 (—5.97 to —4.00) —
Gender (female) 0.51 0.22 (0.14-0.31) 1.25 (1.15-1.36)
Age® (years) — — — 0.045 (0.03—0.06) 1.05 (1.03—1.06)
Renal failure 0.50 0.46 0.28 (0.17-0.41) 1.32 (1.19-1.51)
Prior cardiac surgery 1.10 0.96 0.51 (0.36—-0.69) 1.67 (1.43-1.99)
Chronic pulmonary disease 0.68 0.29 (0.19—0.41) 1.34(1.21-1.51)
Pulmonary hypertension 1.27 0.17 (—0.11 to 0.48) 1.19 (0.90—-1.62)
LVEF (%) —0.03 —0.013 (—0.02 to —0.01) 0.99 (0.98—-0.99)
Critical preoperative state 1.46 1.12 1.02 1.17 (0.97—1.40) 3.22 (2.64—4.06)
NYHA class. (>1) 0.70 0.62 0.33 (0.23—-0.44) 1.39 (1.26—1.55)
Abscess 1.09 0.47 (0.30—0.65) 1.60 (1.35—-1.92)
Fistulae 1.22 1.14 0.59 (0.42—0.79) 1.80 (1.52—-2.20)
Priority of procedure

Urgent status 1.16 0.44 (0.16—0.68) 1.55(1.17-1.97)

Emergency status 0.81 1.95 0.85 (0.53—-1.17) 2.34(1.70-3.22)
Number of valves treated

Two valves treated 0.50 0.22 (0.14—0.30) 1.25(1.15-1.35)

Three valves treated 1.50 0.65 (0.41—-0.90) 1.92 (1.51-2.46)
Valve location (Mitral) 037 0.38 0.19 (0.14-0.25) 1.21 (1.15-1.28)
Aetiology®© — — —

Staphylococcus spp. 0.64 (0.35—-0.94) 1.90 (1.42—-2.56)

Fungi 0.61 (—0.46 to 1.40) 1.84 (0.63—4.06)

Abbreviations: LVEF, left ventricular ejection fraction; NYHA class, New York Health Association classification of functional status.
Stacked regression: In( ) = — 1.861 +0.433 x LP}, +0.131 x LP, | +0.379 x LPL,  +0.045 x Age + 0.64 x Staphylococcus spp. + 0.61 x Fungi
Where, p is the probabi]it_y Bt postoperative mortality and LPIT is the linear predictor for each model selected for aggregation dropping the parameters from age and infection
aetiology; DM (Di Mauro model [EndoSCORE]); FH-I (Ferndndez-Hidalgo model [sp. ES-1]); FH-II (Fernandez-Hidalgo model [sp. ES-II]). Consequently, stacked
intercept = —1.861 + 0433 x (-2.60) + 0.131 x (—3.13) + 0379 x (—4.21) = -5.00, and for instance, the stacked coefficient for renal
failure = 0.433 x (0.50) + 0.131 x (0.46) + 0.379 x 0) = 0.277.

¢ Weights used to create the meta-model: EndoScore = 0.433; Sp. ES-I = 0.131; Sp. ES-II = 0.379.

b Age was categorized in Di Mauro et al. [27] and treated as continuous in Fernandez-Hidalgo et al. [28].

€ Aetiology was categorized in different ways in each existing model.

C-statistic Calibration slope Calibration-in-the-large
C-statistic (95% CI) Slope (95% CI) CITL (95% CI)

Aggregated model
Meta-model — 0.79 (0.76, 0.82) — 0.98 (0.86, 1.13) —— -0.05(-0.20, 0.11)
Published models
Di Mauro 2017 (EndoSCORE) — 0.76 (0.73, 0.79) — 0.80 (0.69, 0.92) —— 0.58 (0.44,0.71)
Fernandez-Hidalgo 2018 (sp. ES-I) — 0.76 (0.73, 0.79) — 0.82(0.70, 0.94) —— -0.02 (-0.16,0.11)
Fernandez-Hidalgo 2018 (sp. ES-II) — 0.76 (0.73, 0.79) — 0.76 (0.65, 0.87) —— 0.62 (0.48, 0.76)

T T T T T T T T T T e e

7 75 8 .85 9 7 .85 I 115 1.3 -4 -2 0 2 4 6 8 1

Fig. 2. Bootstrap internal validation of the meta-model and external validation of existing models selected for aggregation Dashed lines indicate lines of perfect calibration slope (1)
and calibration-in-the-large (0). Black diamonds indicate point estimates and horizontal lines indicate 95% Cls. CITL: Calibration-in-the-large.

a.) Meta-model.

b.) Di Mauro 2017 (EndoSCORE) c.) Fernandez-Hidalgo 2018 (sp. ES-I)

d.) Fernandez-Hidalgo 2018 (sp. ES-II)

Observed
Observed
Observed

4 6 4 6 4 6
Expected Expected Expected

4 6
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Fig. 3. Calibration plots of the meta-model and of the prediction models selected for aggregation. Dashed lines represent perfect calibration, grey circles and bars indicate average
risks and their confidence interval by deciles of the risk spectrum, dark blue lines indicate the Lowess smoother assessment of the calibration at the individual level, and red spike
plots show the distribution of events and non-events.
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mortality outcome, it outperformed the three models used for
model aggregation (see Supplementary material, Fig. S3).

Discussion
Summary of findings

In this systematic review of prediction models for postoperative
mortality in patients with IE, we identified and critically appraised
11 models developed in nine studies. The predicted outcome varied
between studies (in-hospital, 30-day or both in-hospital and 30-
day mortality). Of the 11 prognostic models, only two had low
RoB and one had unclear RoB; the remaining eight models had high
RoB mainly owing to poor statistical methods used, which suggests
that their predictive performance when used in practice is probably
lower than that reported. The sample sizes used to develop the
models were limited and this is a well-known problem that leads to
inaccurate predictions and consequently incorrect health-care de-
cisions in practice [34].

Four out of the 11 published models reported the full model
equation required for a model's aggregation and a complete inde-
pendent external validation as recommended by reporting guide-
lines [8,9]. Two models' equations were recovered after request to
the corresponding authors. Three models that were flagged as low
or unclear RoB were aggregated to build the meta-model. Our
meta-model included as predictors age, gender, renal failure, prior
cardiac surgery, chronic pulmonary disease, pulmonary hyperten-
sion, left ventricular ejection fraction, critical preoperative state,
New York Heart Association classification of functional status
presence of paravalvular complications (abscess and/or fistulae),
urgency of procedure, number of treated valves/prostheses, valve
location and infection aetiology. It showed better performance than
the original models. We investigated the internal validity of the
meta-model using bootstrap validation, and the results indicated
there was no substantial over-optimism and that the validation
sample was sufficiently large to combine and update the published
models. Therefore, the meta-model is probably less prone to over-
optimism and more generalizable to new patient populations or
settings, because it was built from the evidence of several patient
cohorts and optimized to a nationwide registry.

Strengths and limitations

To our knowledge, this is the first systematic review with spe-
cific focus on prediction models of postoperative mortality in pa-
tients with IE, with a thorough evaluation of the RoB, and using an
external validation cohort to build a meta-model. We only com-
bined the prediction models with low or unclear RoB and adjusted
them to a new patient population. We used multiple imputation of
predictors to avoid loss of useful information. The resulting meta-
model incorporated previous knowledge optimally and out-
performed previously published models.

Our study has some limitations. The outcome definition in the
validation data set was either 30-day or in-hospital postoperative
mortality, and the outcome definition in the three models used for
aggregation was 30-day mortality. Despite this difference a sensi-
tivity analysis showed that the meta-model outperformed all
published models when we explored its performance for the 30-
day mortality. Two out of the three models considered for aggre-
gation were developed in the same cohort. This circumstance in-
creases the probability that the same predictors were included in
both models and, therefore, it could magnify their associations with
the outcome in the meta-model. However, we think that the impact
of this magnification is limited because the weight of the ES-I
model is relatively small compared with the other two models.

Unfortunately, although we identified 11 prediction models in our
systematic review, we were only able to validate the models for
which the complete model equation was available. All of these
incomplete models were classified as high RoB and were conse-
quently excluded from the analysis. We cannot rule out the pres-
ence of publication bias in our review. Unpublished studies are
likely to be of poor quality (small, overfitted, and with poor pre-
dictive performance). Therefore, it is very likely that they would
have been excluded from our meta-model due to their high RoB. So
the impact of this bias is expected to be low. Although the definition
of predictors in GAMES registry was standardized, these could
differ from definitions of published studies.

Comparison to existing studies

Most studies to develop new prediction models are based on
small sample sizes and the modelling strategies are excessively
driven by available data without considering the previous knowl-
edge, leading to inefficient models. Other authors carried out
external validation studies but none of them made a critical
appraisal [38—41]. In a previous study, Varela et al. developed a
prognostic model based on a systematic review of factors related to
in-hospital mortality. The model was built using a series of uni-
variate meta-analyses that pooled adjusted and unadjusted esti-
mates altogether without taking into consideration the correlation
among these factors. These pooled univariate estimates were then
transformed into risk points to create a risk score [42,43]. Our
proposal includes more factors and our analysis included only es-
timates from low RoB studies. All estimates are from multivariate
adjusted models and the weight each model has to build the meta-
model is determined by their predictive performance in a valida-
tion cohort. This statistical methodology is in concordance with
current recommendations [16,44].

Implications for practice

The decision whether to perform surgery for IE remains a
challenge in clinical practice and it should come after a careful
balance between the procedural risk and its estimated benefit.
Critical preoperative state and priority of the procedure (urgent or
emergency) are the most salient risk factors included in our meta-
model. Patients with depressed left ventricukar ejection fraction,
New York Heart Association classification or renal failure also have
worse prognosis. In addition, the aggressiveness of the IE infection
as well as the technical difficulties of the surgery also implied
higher risk of mortality. We expect a worse outcome in patients
with IE caused by Staphylococcus spp. or fungi or in patients with
paravalvular abscesses, fistulae or previous cardiac surgery because
in these patients the surgery is challenging. Although risk scores for
predicting mortality do not offer help in terms of establishing the
burdens of surgical futility, they add great value by helping endo-
carditis teams to manage this complex disease and lead to more
personalized assistance based on individual patient characteristics.
Moreover, the meta-model can be used to determine the case-mix
of surgical hospitals and compare their performance adjusted for
their case-mix.

Although in the 2015 IE guidelines [45] the score created by De
Feo et al. [24] for native IE is the only one recommended, it would
be expected to change with the creation of several new IE-specific
scores and the generation of a meta-model that outperformed
existing models.

The explanatory interpretation of the meta-model coefficients
should be made with caution because coefficients have been
shrunk, and therefore could be affected by the Stein's paradox [46].
Shrinkage of the multivariable regression coefficients introduces a
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bias towards the null, but at the same time, properly shrinking
coefficients ensures better predictions [47].

Challenges and opportunities

Further external validation studies are necessary to confirm the
improvement in predictive ability of the meta-model. We will
develop an online calculator to allow a simple and effective use of
the meta-model. Given the low incidence of IE, sufficiently large
sample sizes for the adequate development of new predictive
models are difficult to come by. We encourage authors to make
their data available in order to allow building model based on
available data [48,49].

Conclusions

The meta-model is a robust prognostic model to calculate the
individualized risk of postoperative mortality in patients with IE. It
was developed based on the previous evidence using aggregation
methods of the existing models identified from a systematic review
and after critical being appraised. The meta-model outperformed
existing models; therefore, this preoperative tool can help guide
individually tailored choices made by patients and clinicians.
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