Nomogram to detect prostate cancer for lesions in the transitional zone in - Evidencio
Nomogram to detect prostate cancer for lesions in the transitional zone in patients with PSA between 4-20 ng/mL

Purpose: To develop and externally validate nomograms integrating quantitative apparent diffusion coefficient (ADC) sequence, Prostate Imaging Reporting and Data System (PI-RADS) derived from biparametric MRI (bp-MRI), and clinical indicators to detect prostate cancer (PCa) and clinically significant prostate cancer (csPCa) in patients with prostate specific antigen (PSA) between 4-20 ng/mL.

Materials and methods: Nomograms were developed using data from a cohort of suspected prostate cancer patients with elevated PSA of 4–20 ng/mL who underwent prostate MRI and biopsy at our institution between January 1, 2018, and August 31, 2023 (n = 440). The outcomes were the presence of csPCa and PCa. Nomograms were constructed separately for lesions located in the peripheral and transitional zones. Significant variables identified through univariate logistic analysis and LASSO regression analysis were used to construct four separate nomograms. These nomograms were subsequently validated and evaluated using an external independent cohort of patients obtained from the Prostate Imaging: Cancer AI (PI-CAI) database (n = 313).

Results: A total of 131 (29.8%) and 106 (33.9%) patients had csPCa in the training and external validation cohorts, respectively. Age, PI-RADS, ADC, and PSA density (PSAD) were independent predictors in the prediction model for csPCa in the peripheral zone (PZ), showing an area under the curve (AUC) of 0.934 (95% CI, 0.906-0.962). For csPCa in the transitional zone (TZ), PI-RADS, ADC, and PSAD were independent predictors, with an AUC of 0.903 (95% CI, 0.824-0.983). Additionally, PI-RADS and ADC were independent predictors for PCa in PZ, with an AUC of 0.882 (95% CI, 0.840-0.925), while PI-RADS and PSAD were independent predictors in TZ, with an AUC of 0.764 (95% CI, 0.683-0.844). All four nomograms demonstrated good discrimination with high AUCs in the external validation cohort. Calibration curves indicated good agreement, and decision curve analyses (DCAs) confirmed the clinical benefits of the nomograms.

Conclusions: ADC proved to be the strongest predictor of csPCa in both PZ and TZ, and for PCa specifically in PZ. We developed nomograms integrating ADC, bp-MRI-derived PI-RADS, age and PSAD to detect csPCa and PCa in patients with PSA of 4–20 ng/mL.

Les auteurs de la recherche: Kunlin Wu
Version: 3.0
  • Public
  • Urologie
  • {{ modelType }}
  • Détails
  • Valider le algorithme
  • Sauvegarder l'entrée
  • Entrée de la charge
Affichage
Unités

{{ section.title }}

{{ section.description }}

Calculer le résultat

Définir d'autres paramètres pour effectuer le calcul

Risk of PCa in TZ is .

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervalle de résultats {{ additionalResult.min }} à {{ additionalResult.max }}

Informations conditionnelles

{{ file.classification }}
PRO
Note
Les notes ne sont visibles que dans le téléchargement des résultats et ne sont pas sauvegardées par Evidencio.

Ce algorithme est fourni à des fins d'éducation, de formation et d'information. Il ne doit pas être utilisé pour aider à la prise de décision médicale ou pour fournir des services médicaux ou de diagnostic. Lire l'intégralité de notre disclaimer.

Algorithmes sous-jacents Une partie de
Commentaires
Commentaire
Veuillez saisir un commentaire
Les commentaires sont visibles par tous

Retour d'information sur le algorithme

Pas encore de retour d'information 1 Commentaire {{ model.comments.length }} Commentaires
Sur {{ comment.created_at }} {{ comment.user.username }} un auteur qui n'est plus enregistré a écrit :
{{ comment.content }}
logo

Veuillez vous connecter pour activer les fonctions d'impression d'Evidencio

Pour utiliser les fonctions d'impression d'Evidencio, vous devez être connecté.
Si vous n'avez pas de compte communautaire Evidencio, vous pouvez créer un compte personnel gratuit à:

https://www.evidencio.com/registration

Résultats imprimés - Exemples {{ new Date().toLocaleString() }}


Avantages du compte communautaire Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Clause de non-responsabilité : les calculs ne doivent jamais dicter les soins aux patients et ne remplacent pas le jugement d'un professionnel.
Evidencio v3.38 © 2015 - 2025 Evidencio. Tous droits réservés