Predicted risk: ...
{{ model.survival.PITTitle }}
{{ model.survival.YNETitle }}
Predicted risk:
Outcome stratification
Conditional information
Result interpretation
Overall information regarding the model:
The model was based on 2,892 cases of DCIS and 589 events of underestimated invasive breast cancer. The predicted risks in our study ranged from 9.5% to 80.2%, the mean was 20.6% and the median was 14.7%. The c-index was 0.668 and it was 0.661 after correction for optimism by bootstrapping. In this study the sensitivity was the rate of underestimates that was correctly predicted as high-risk and 1-specificity was the rate of DCIS at excision that was falsely predicted as high-risk. The model has not been validated externally.
How to use the model:
The model can be used to calculate the individual risk of underestimation based on routinely available pre-operatively known risk factors
Calculations alone should never dictate patient care, and are no substitute for professional judgement. See our full disclaimer.
Model feedback
No feedback yet 1 Comment {{ model.comments.length }} Comments
Please sign in to enable Evidencio print features
If you don't have an Evidencio Community Account you can create your free personal account at:
https://www.evidencio.com/registration
Printed results - Examples {{ new Date().toLocaleString() }}

Evidencio Community Account Benefits
With an Evidencio Community account you can:
- Create and publish your own prediction models.
- Share your prediction models with your colleagues, research group, organization or the world.
- Review and provide feedback on models that have been shared with you.
- Validate your models and validate models from other users.
- Find models based on Title, Keyword, Author, Institute, or MeSH classification.
- Use and save prediction models and their data.
- Use patient specific protocols and guidelines based on sequential models and decision trees.
- Stay up-to-date with new models in your field as they are published.
- Create your own lists of favorite models and topics.
A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.
{{ variable.title }}
{{ row }} |