Hypertensive disorders of pregnancy risk prediction - Evidencio
Hypertensive disorders of pregnancy risk prediction

A predictive model aimed at reducing the risk of hypertensive disorders of pregnancy (HDP) through tailored interpregnancy weight management strategies.

Les auteurs de la recherche: Tano, S., Kotani, T., Ushida, T. et al.
Version: 1.2
  • Public
  • Non spécifié
  • {{ modelType }}
  • Détails
  • Valider le algorithme
  • Sauvegarder l'entrée
  • Entrée de la charge
Affichage
Unités

{{ section.title }}

{{ section.description }}

Calculer le résultat

Définir d'autres paramètres pour effectuer le calcul

% risk on developing HDP in a second pregnancy

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervalle de résultats {{ additionalResult.min }} à {{ additionalResult.max }}

Informations conditionnelles

The model should be interpreted as follows, if for example the model predicts a 25% risk, this means that out of 100 women with similar profiles, approximately 25 are expected to develop HDP in their next pregnancy.

The model allows women to visualize how different interpregnancy weight changes can increase or decrease their HDP risk. For example, reducing BMI by a certain amount might lower the risk from 25% to 15%, guiding realistic and achievable weight management goals.


Clinical Implications

  • High Risk: Suggests the need for proactive intervention, such as weight management, lifestyle changes, and closer medical monitoring before and during pregnancy.

  • Low Risk: Indicates a lower likelihood of HDP but still requires general healthy pregnancy practices.

No cut-off values for high-risk and low-risk were determined.

The percentage is not an absolute prediction but a probabilistic estimate to support decision-making. It should be used in combination with medical advice to create personalized health plans.


HDP, affecting 8–10% of pregnancies, is a leading cause of maternal mortality. Current preventive strategies mainly focus on post-conception interventions, leaving a gap in effective pre-conception care, especially regarding weight management. Standard weight management guidelines, such as achieving a BMI of 18.5–25.0 kg/m², are often unattainable for severely obese women. This highlights the need for a more personalized and achievable approach to weight management between pregnancies.

The model is designed to help women planning future pregnancies understand their personalized risk of developing HDP and visualize how interpregnancy weight management can modify this risk. It empowers healthcare providers and patients to collaboratively set realistic, personalized weight management goals that may reduce HDP risk.

The model is specifically developed and validated for women transitioning from their first to second pregnancy. For women planning a third pregnancy, the model should be adapted and validated in a new study.

Input: Age at delivery of previous pregnancy, BMI before previous pregnancy, history of HDP (HDP at the index pregnancy), Pi (Pregnancy interval), ABc (Annual BMI change) 

Output: Predicted probability of developing HDP in a subsequent pregnancy and a visual representation of how changes in BMI can modify HDP risk.

Intended use: Weight management between first and second pregnancy.

{{ file.classification }}
PRO
Note
Les notes ne sont visibles que dans le téléchargement des résultats et ne sont pas sauvegardées par Evidencio.

Ce algorithme est fourni à des fins d'éducation, de formation et d'information. Il ne doit pas être utilisé pour aider à la prise de décision médicale ou pour fournir des services médicaux ou de diagnostic. Lire l'intégralité de notre disclaimer.

Algorithmes sous-jacents Une partie de
Commentaires
Commentaire
Veuillez saisir un commentaire
Les commentaires sont visibles par tous

Retour d'information sur le algorithme

Pas encore de retour d'information 1 Commentaire {{ model.comments.length }} Commentaires
Sur {{ comment.created_at }} {{ comment.user.username }} un auteur qui n'est plus enregistré a écrit :
{{ comment.content }}
logo

Veuillez vous connecter pour activer les fonctions d'impression d'Evidencio

Pour utiliser les fonctions d'impression d'Evidencio, vous devez être connecté.
Si vous n'avez pas de compte communautaire Evidencio, vous pouvez créer un compte personnel gratuit à:

https://www.evidencio.com/registration

Résultats imprimés - Exemples {{ new Date().toLocaleString() }}


Avantages du compte communautaire Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Clause de non-responsabilité : les calculs ne doivent jamais dicter les soins aux patients et ne remplacent pas le jugement d'un professionnel.
Evidencio v3.38 © 2015 - 2025 Evidencio. Tous droits réservés