Hypertensive disorders of pregnancy risk prediction - Evidencio
Hypertensive disorders of pregnancy risk prediction

A predictive model aimed at reducing the risk of hypertensive disorders of pregnancy (HDP) through tailored interpregnancy weight management strategies.

Forschungsautoren: Tano, S., Kotani, T., Ushida, T. et al.
Version: 1.2
  • Öffentlich
  • Nicht spezifiziert
  • {{ modelType }}
  • Details
  • Algorithmus validieren
  • Eingabe speichern
  • Eingabe laden
Anzeige
Einheiten

{{ section.title }}

{{ section.description }}

Berechnen Sie das Ergebnis

Legen Sie weitere Parameter zur Durchführung der Berechnung fest

% risk on developing HDP in a second pregnancy

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Ergebnisintervall {{ additionalResult.min }} bis {{ additionalResult.max }}

Bedingte Informationen

The model should be interpreted as follows, if for example the model predicts a 25% risk, this means that out of 100 women with similar profiles, approximately 25 are expected to develop HDP in their next pregnancy.

The model allows women to visualize how different interpregnancy weight changes can increase or decrease their HDP risk. For example, reducing BMI by a certain amount might lower the risk from 25% to 15%, guiding realistic and achievable weight management goals.


Clinical Implications

  • High Risk: Suggests the need for proactive intervention, such as weight management, lifestyle changes, and closer medical monitoring before and during pregnancy.

  • Low Risk: Indicates a lower likelihood of HDP but still requires general healthy pregnancy practices.

No cut-off values for high-risk and low-risk were determined.

The percentage is not an absolute prediction but a probabilistic estimate to support decision-making. It should be used in combination with medical advice to create personalized health plans.


HDP, affecting 8–10% of pregnancies, is a leading cause of maternal mortality. Current preventive strategies mainly focus on post-conception interventions, leaving a gap in effective pre-conception care, especially regarding weight management. Standard weight management guidelines, such as achieving a BMI of 18.5–25.0 kg/m², are often unattainable for severely obese women. This highlights the need for a more personalized and achievable approach to weight management between pregnancies.

The model is designed to help women planning future pregnancies understand their personalized risk of developing HDP and visualize how interpregnancy weight management can modify this risk. It empowers healthcare providers and patients to collaboratively set realistic, personalized weight management goals that may reduce HDP risk.

The model is specifically developed and validated for women transitioning from their first to second pregnancy. For women planning a third pregnancy, the model should be adapted and validated in a new study.

Input: Age at delivery of previous pregnancy, BMI before previous pregnancy, history of HDP (HDP at the index pregnancy), Pi (Pregnancy interval), ABc (Annual BMI change) 

Output: Predicted probability of developing HDP in a subsequent pregnancy and a visual representation of how changes in BMI can modify HDP risk.

Intended use: Weight management between first and second pregnancy.

{{ file.classification }}
PRO
Anmerkung
Notizen sind nur im Ergebnis-Download sichtbar und werden von Evidencio nicht gespeichert.

Dieses Algorithmus wird zu Bildungs-, Schulungs- und Informationszwecken bereitgestellt. Es darf nicht zur Unterstützung der medizinischen Entscheidungsfindung oder zur Erbringung medizinischer oder diagnostischer Leistungen verwendet werden. Lesen Sie unseren vollständigen disclaimer.

Zugrunde liegende Algorithmen Teil von
Kommentare
Kommentar
Bitte geben Sie einen Kommentar
Kommentare sind für jeden sichtbar.

Algorithmus-Feedback

Noch keine Rückmeldung 1 Kommentar {{ model.comments.length }} Kommentare
An {{ comment.created_at }} {{ comment.user.username }} ein nicht mehr registrierter Autor schrieb:
{{ comment.content }}
logo

Bitte melden Sie sich an, um die Evidencio-Druckfunktionen zu aktivieren

Um die Evidencio-Druckfunktionen nutzen zu können, müssen Sie angemeldet sein.
Wenn Sie keinen Evidencio-Community-Account besitzen, können Sie sich kostenlos ein persönliches Konto erstellen:

https: // www. evidencio.com/registration

Gedruckte Ergebnisse - Beispiele {{ new Date().toLocaleString() }}


Vorteile des Evidencio-Community-Kontos


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Berechnungen allein sollten niemals die Pflege der Patienten vorschreiben und ersetzen kein professionelles Urteilsvermögen.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle Rechte vorbehalten