Geschatte glomerulaire filtratie snelheid: eGFR (CDK-EPI formule)
In 2009 werd de CKD-EPI formule gepubliceerd voor de berekening van de geschatte glomerulaire filtratiesnelheid. De CKI-EPI kent enkele voordelen boven het gebruik van de eerder gebruikte MDRD-formule. 
Research authors: Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration).
Details Formula Study characteristics Files & References
★★★★
Model author
Model ID
1137
Version
1.5
Revision date
2019-04-24
MeSH terms
  • Kidney Function Tests
  • Glomerular Filtration Rate
  • Model type
    Custom model (Conditional)
    Status
    public
    Rating
    Share
    Condition Formula

    Additional information

    BACKGROUND: Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values.

    OBJECTIVE: To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.

    DESIGN: Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates.

    SETTING: Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006.

    PARTICIPANTS: 8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES.

    MEASUREMENTS: GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age.

    RESULTS: In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%).

    LIMITATION: The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR.

    CONCLUSION: The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study (MDRD) equation and could replace it for routine clinical use.

    Study Population

    Total population size: 5504
    Males: {{ model.numberOfMales }}
    Females: {{ model.numberOfFemales }}

    Continuous characteristics

    Name Mean SD Unit
    Age 47 15 years
    Height 170 10 cm
    Weight 82 20 kg
    Body mass index (BMI) 28 6 kg/m2
    Body surface area 1.93 0.20 m2
    eGFR 68 40 ml/min per 1.73 m2
    Serum creatinine level 146 106 umol/l

    Categorical characteristics

    Name Subset / Group Nr. of patients
    Age <40 years 2058
    41-65 years 2751
    66-70 years 476
    71-75 years 150
    76-80 years 41
    >80 years 28
    Race Black 1728
    Hispanic 247
    Asian 62
    White and other 3467
    Kidney donor Yes 694
    No 4810
    Transplant recipient Yes 241
    No 5263
    Diabetes Yes 1581
    No 3923

    Related files

    No related files available

    Supporting Publications

    Geschatte glomerulaire filtratie snelheid (CDK-EPI):
    ...
    ml/min/1.73m2

    {{ resultSubheader }}

    {{ model.survival.PITTitle }}

    {{ model.survival.YNETitle }}

    Result
    Note
    Notes are only visible in the result download and will not be saved by Evidencio

    Geschatte glomerulaire filtratie snelheid (CDK-EPI): ml/min/1.73m2

    {{ resultSubheader }}

    Outcome stratification

    Result interval {{ additionalResult.min }} to {{ additionalResult.max }}

    Conditional information

    Result interpretation


    Resultaat interpretatie: 
    De CKD-EPI formule kent een aantal verbeteringen ten opzichte van de veelgebruikte MDRD-formule:

    • De CKD-EPI formule is breder toepasbaar dan de MDRD formule, omdat de formule ook gevalideerd is voor eGFR waarden tussen de 60 en 90 ml/min/1.73m² en voor personen ouder dan 70 jaar.
    • Een gering nierfunctieverlies (eGFR tussen de 60 en 90 ml/min/1.73m² ) is met de CKD-EPI formule betrouwbaarder te detecteren.
    • Jongeren worden met de CKD-EPI formule vaker geclassificeerd in een hogere GFR klasse. Ouderen worden met de CKD-EPI formule vaker geclassificeerd in een lagere GFR klasse. De eGFR op basis van de CKD-EPI formule leidt hiermee tot minder “onterechte” verwijzingen naar de 2e lijn en een verbeterd medicatiebeleid op geleide van nierfunctie.

    De CKD-EPI formule is niet toepasbaar bij:
    • personen jonger dan 18 jaar;
    • personen met een sterk afwijkend lichaamsoppervlak (vb. amputatie);
    • ethnische groeperingen anders dan het blanke of negroïde ras;
    • patiënten met spierziekten, paraplegie of quadriplegie (muscle wasting);
    • patiënten met acute nierinsufficiëntie;
    • ondervoede patiënten;
    • personen met een (strikt) vegetarisch dieet;
    • zwangeren.

    Bron:
    Levey AS, Stevens LA, Schmid CH, et al. A New Equation to Estimate Glomerular Filtration Rate.  Ann Intern Med. 2009 May 5;150(9):604-12.

    {{ file.classification }}

    Calculations alone should never dictate patient care, and are no substitute for professional judgement. See our full disclaimer.

    Comments
    Rating
    Comment
    Please enter a comment of rating
    Comments are visible to anyone

    Model feedback

    No feedback yet 1 Comment {{ model.comments.length }} Comments
    Not rated | On {{ comment.created_at }} {{ comment.user.username }} a no longer registered author wrote:
    logo

    Please sign in to enable Evidencio print features

    In order to use the Evidencio print features, you need to be logged in.
    If you don't have an Evidencio Community Account you can create your free personal account at:

    https://www.evidencio.com/registration

    Printed results - Examples {{ new Date().toLocaleString() }}


    Evidencio Community Account Benefits


    With an Evidencio Community account you can:

    • Create and publish your own prediction models.
    • Share your prediction models with your colleagues, research group, organization or the world.
    • Review and provide feedback on models that have been shared with you.
    • Validate your models and validate models from other users.
    • Find models based on Title, Keyword, Author, Institute, or MeSH classification.
    • Use and save prediction models and their data.
    • Use patient specific protocols and guidelines based on sequential models and decision trees.
    • Stay up-to-date with new models in your field as they are published.
    • Create your own lists of favorite models and topics.
    A personal Evidencio account is free, with no strings attached! Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.

    Disclaimer: Calculations alone should never dictate patient care, and are no substitute for professional judgement.