Risk of metastasis in pedunculated T1 Colorectal Cancer - Evidencio
Risk of metastasis in pedunculated T1 Colorectal Cancer
Background & Aims
Most patients with pedunculated T1 colorectal tumors referred for surgery are not found to have lymph node metastases, and were therefore unnecessarily placed at risk for surgery-associated complications. The study on the development of the current model aimed to identify factors associated with need for surgery in patients with pedunculated T1 colorectal tumors.

Five histologic factors were identified that differentiated cases from controls: lymphovascular invasion, Haggitt level 4 invasion, muscularis mucosae type B (incompletely or completely disrupted), poorly differentiated clusters and tumor budding, which identified patients who required surgery with an area under the curve (AUC) value of 0.83 (95% CI, 0.76 – 0.90).

In a cohort-nested matched case–control study of 708 patients with pedunculated T1 colorectal carcinomas, a model based on histologic features of tumors that identifies patients who require surgery (due to high risk of metastasis) was developed with greater accuracy than previous models. This model might be used to identify patients most likely to benefit from adjuvant surgery.
Autori della ricerca: Yara Backes, Sjoerd G. Elias, John N. Groen, Matthijs P. Schwartz, Frank H.J. Wolfhagen, Joost M.J. Geesing, Frank ter Borg, Jeroen van Bergeijk, Bernard W.M. Spanjer, Wouter H. de Vos tot Nederveen Cappel, Koen Kessels, Cornelis A. Seldenrijk, Mihaela G. Raicu, Paul Drillenburg, Anya N. Milne, Marjon Kerkhof, Tom C.J. Seerden, Peter D. Siersema, Frank P. Vleggaar, G. Johan A. Offerhaus, Miangela M. Lacle, Leon M.G. Moons
Versione: 1.4
  • Pubblico
  • Oncologia
  • {{ modelType }}
  • Dettagli
  • Convalida del algoritmo
  • Salvare l'input
  • Ingresso di carico
Display
Unità

{{ section.title }}

{{ section.description }}

Calcolare il risultato

Impostare altri parametri per eseguire il calcolo

Predicted risk of metastasis in penduculated T1 CRC

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervallo di risultati {{ additionalResult.min }} a {{ additionalResult.max }}

Informazioni condizionali

When using a clinically plausible predicted probability threshold of 4.0% or more, 67.5% of patients (478/708) were predicted to not need surgery. This threshold identified patients who required surgery with 83.8% sensitivity (95% CI, 68.0 – 93.8) and 70.3% specificity (95% CI, 60.9 – 78.6). 

{{ file.classification }}
PRO
Nota
Le note sono visibili solo nel download dei risultati e non vengono salvate da Evidencio.

Questo algoritmo viene fornito a scopo educativo, formativo e informativo. Non deve essere utilizzato a supporto di decisioni mediche o per fornire servizi medici o diagnostici. Leggete il nostro sito completo disclaimer.

Algoritmi sottostanti Parte di
Commenti
Commento
Inserisci un commento
I commenti sono visibili a chiunque

Feedback del algoritmo

Ancora nessun feedback 1 Commento {{ model.comments.length }} Commenti
Su {{ comment.created_at }} {{ comment.user.username }} un autore non più registrato ha scritto:
{{ comment.content }}
logo

Effettuare l'accesso per abilitare le funzionalità di stampa di Evidencio

Per utilizzare le funzioni di stampa di Evidencio, è necessario aver effettuato il login.
Se non si dispone di un account comunitario Evidencio, è possibile creare un account personale gratuito all'indirizzo:

https://www.evidencio.com/registration

Risultati stampati - Esempi {{ new Date().toLocaleString() }}


Vantaggi del conto comunitario Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Esclusione di responsabilità: i calcoli da soli non dovrebbero mai dettare la cura del paziente e non sostituiscono il giudizio professionale.
Evidencio v3.38 © 2015 - 2025 Evidencio. Tutti i diritti riservati