Predicting severity of community-acquired pneumonia with the Pneumonia Sev - Evidencio
Predicting severity of community-acquired pneumonia with the Pneumonia Severity Index (PSI) score
The PSI prediction rule accurately identifies the patients with community-acquired pneumonia who are at low risk for death and other adverse outcomes. This prediction rule may help physicians make more rational decisions about hospitalization for patients with pneumonia.
Forschungsautoren: Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ, and Kapoor WN.
Version: 1.27
  • Öffentlich
  • Pulmonologie
  • {{ modelType }}
  • Details
  • Algorithmus validieren
  • Eingabe speichern
  • Eingabe laden
Anzeige
Einheiten

{{ section.title }}

{{ section.description }}

Berechnen Sie das Ergebnis

Legen Sie weitere Parameter zur Durchführung der Berechnung fest

Total pneumonia severity index (PSI) score: points

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Ergebnisintervall {{ additionalResult.min }} bis {{ additionalResult.max }}

Bedingte Informationen

How this model should be used:
The PSI prediction rule identifies three distinct risk classes (I, II, and III) of patients who are at sufficiently low risk for death and other adverse medical outcomes that physicians can consider outpatient treatment or an abbreviated course of inpatient care for them.1 The risk stratification provided by de PSI model could also help target low-risk patients at the time of admission for whom rapid conversion from intravenous to oral antimicrobial therapy and early discharge might be appropriate.

Model performance: 
No significant differences in mortality in each of the five PSI risk classes were found among three large study cohorts:

  • MedisGroups derivation cohort (N=14,199 patients)
  • MedisGroups validation cohort (N=38,039 patients)
  • PORT validation cohort (N=2287 patients)
Although this study provides preliminary evidence that the PSI prediction rule could help physicians determine when hospital care is appropriate for patients with community-acquired pneumonia, firm recommendations for its clinical use will depend on future prospective trials to confirm its effectiveness and safety. Furthermore, although the PSI exhibits a high discriminatory power for assigning appropriate risk class, it is complicated to calculate, limiting its clinical application.

Source:
  1. Fine MJ, Auble TE, Yealy DM et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 1997;336:243-50.

{{ file.classification }}
PRO
Anmerkung
Notizen sind nur im Ergebnis-Download sichtbar und werden von Evidencio nicht gespeichert.

Dieses Algorithmus wird zu Bildungs-, Schulungs- und Informationszwecken bereitgestellt. Es darf nicht zur Unterstützung der medizinischen Entscheidungsfindung oder zur Erbringung medizinischer oder diagnostischer Leistungen verwendet werden. Lesen Sie unseren vollständigen disclaimer.

Zugrunde liegende Algorithmen Teil von
Kommentare
Kommentar
Bitte geben Sie einen Kommentar
Kommentare sind für jeden sichtbar.

Algorithmus-Feedback

Noch keine Rückmeldung 1 Kommentar {{ model.comments.length }} Kommentare
An {{ comment.created_at }} {{ comment.user.username }} ein nicht mehr registrierter Autor schrieb:
{{ comment.content }}
logo

Bitte melden Sie sich an, um die Evidencio-Druckfunktionen zu aktivieren

Um die Evidencio-Druckfunktionen nutzen zu können, müssen Sie angemeldet sein.
Wenn Sie keinen Evidencio-Community-Account besitzen, können Sie sich kostenlos ein persönliches Konto erstellen:

https: // www. evidencio.com/registration

Gedruckte Ergebnisse - Beispiele {{ new Date().toLocaleString() }}


Vorteile des Evidencio-Community-Kontos


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Berechnungen allein sollten niemals die Pflege der Patienten vorschreiben und ersetzen kein professionelles Urteilsvermögen.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle Rechte vorbehalten