Revised Mayo Clinic AL Amyloidosis Staging System
Staging system for newly-diagnosed light-chain amyloidosis, incorporating serum free light chains.
Research authors: Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al.
Version: 1.36
  • Public
  • Internal medicine
  • {{ modelType }}
  • Details
  • Validate model
  • Save input
  • Load input

Calculate the result

Set more parameters to perform the calculation

Number of risk factors: risk factors

{{ resultSubheader }}
{{ chart.title }}
Result interval {{ additionalResult.min }} to {{ additionalResult.max }}

Conditional information

Dit prognostische stagering systeem voor nieuw-gediagnosticeerde AL (lichte keten) amyloïdose is gebaseerd op een retrospectieve analyse van 810 patiënten van de Mayo Clinic.

Model validatie: 
Het stagering systeem is gevalideerd in een cohort van 303 patiënten die een autologe stamcel transplantatie hebben ondergaan (waarbij gebruik werd gemaakt van pre-transplantatie labwaarden) en een cohort van 103 patiënten geïncludeerd in klinische studies.1 

Model prestaties: 
In vergelijking tot het eerdere amyloïdose stagering systeem van Mayo Clinic, waarin vrije lichte keten buiten beschouwing zijn gelaten en waarbij alternatieve afkappunten voor hsTNT en NT-proBNP zijn gebruikt,2 resulteerde het gereviseerde stagering systeem in een verbeterde model discriminatie.1


  1. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012; 30: 989-95.
  2. Dispenzieri A, Gertz MA, Kyle RA, Lacy MQ, Burritt MF, Therneau TM et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004; 22: 3751-7.

{{ file.classification }}
Notes are only visible in the result download and will not be saved by Evidencio

This model is provided for educational, training and information purposes. It must not be used to support medical decision making, or to provide medical or diagnostic services. Read our full disclaimer.

Underlying models Part of
Please enter a comment
Comments are visible to anyone

Model feedback

No feedback yet 1 Comment {{ model.comments.length }} Comments
On {{ comment.created_at }} {{ comment.user.username }} a no longer registered author wrote:
{{ comment.content }}

Please sign in to enable Evidencio print features

In order to use the Evidencio print features, you need to be logged in.
If you don't have an Evidencio Community Account you can create your free personal account at:

Printed results - Examples {{ new Date().toLocaleString() }}

Evidencio Community Account Benefits

With an Evidencio Community account you can:

  • Create and publish your own prediction models.
  • Share your prediction models with your colleagues, research group, organization or the world.
  • Review and provide feedback on models that have been shared with you.
  • Validate your models and validate models from other users.
  • Find models based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction models and their data.
  • Use patient specific protocols and guidelines based on sequential models and decision trees.
  • Stay up-to-date with new models in your field as they are published.
  • Create your own lists of favorite models and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.

Disclaimer: Calculations alone should never dictate patient care, and are no substitute for professional judgement.
Evidencio v3.23 © 2015 - 2024 Evidencio. All Rights Reserved