prognostic multivariable model on admission for hospitalized patients with - Evidencio
prognostic multivariable model on admission for hospitalized patients with COVID-19
This prediction model was developed by Xie J et al. (2020) to identify patients with lethal COVID19. Its practical reliance on commonly available parameters should improve usage of limited healthcare resources and patient survival rate.
Forschungsautoren: Xie J, Hungerford D, Chen H, Abrams ST, Shusheng L, Wang G, Wang Y, Kang H, Bonnett L, Zheng R, Li X, Tong Z, Du B, Qiu H, Toh C
Version: 1.29
  • Öffentlich
  • Notfallmedizin
  • {{ modelType }}
  • Details
  • Algorithmus validieren
  • Eingabe speichern
  • Eingabe laden
Anzeige
Einheiten

{{ section.title }}

{{ section.description }}

Berechnen Sie das Ergebnis

Legen Sie weitere Parameter zur Durchführung der Berechnung fest

Predicted probability of mortality:

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Ergebnisintervall {{ additionalResult.min }} bis {{ additionalResult.max }}

Bedingte Informationen

Intended use: 
There is an urgent need for effective prediction models to identify patients who are most likely to develop respiratory failure and poor outcomes. This model was developed to predict mortality of COVID-19 hospitalized patients to guide decision-making between clinicians, patients and families.

Model performance: 
The model has been validated internally and externally with a cohort of 145 patients from a different hospital. Discrimination of the model was excellent in both internal (c-statistic=0.89) and external (c=0.98) validation. When applied to new patients, the model yielded probabilities of mortality that were too high for low risk patients and too low for high risk patients (calibration slope >1). After recalibration of the model to account for underlying differences in the risk profile of the datasets, calibration plots showed excellent agreement between predicted and observed probabilities of mortality. 

Model limitations: 
Recruited patients were mainly self-referrals, who are more likely to have severe symptoms that cause them to seek emergency medical help. Other hospitals are more likely to test patients who have more pronounced symptoms, thus creating an inherent bias in the patient sample. Therefore, the cohort may not accurately represent patients with mild or asymptomatic COVID-19. These results need to be further validated with patients who are hospitalized at different locations and for different severities of illness to confirm generalizability and robustness of the model. Finally, the accompanying publication describing the development and validation of the model has not yet been peer reviewed. 

References: 
Preprint article by Xie et al, 2020 avaialble at MedRxiv. 

{{ file.classification }}
PRO
Anmerkung
Notizen sind nur im Ergebnis-Download sichtbar und werden von Evidencio nicht gespeichert.

Dieses Algorithmus wird zu Bildungs-, Schulungs- und Informationszwecken bereitgestellt. Es darf nicht zur Unterstützung der medizinischen Entscheidungsfindung oder zur Erbringung medizinischer oder diagnostischer Leistungen verwendet werden. Lesen Sie unseren vollständigen disclaimer.

Zugrunde liegende Algorithmen Teil von
Kommentare
Kommentar
Bitte geben Sie einen Kommentar
Kommentare sind für jeden sichtbar.

Algorithmus-Feedback

Noch keine Rückmeldung 1 Kommentar {{ model.comments.length }} Kommentare
An {{ comment.created_at }} {{ comment.user.username }} ein nicht mehr registrierter Autor schrieb:
{{ comment.content }}
logo

Bitte melden Sie sich an, um die Evidencio-Druckfunktionen zu aktivieren

Um die Evidencio-Druckfunktionen nutzen zu können, müssen Sie angemeldet sein.
Wenn Sie keinen Evidencio-Community-Account besitzen, können Sie sich kostenlos ein persönliches Konto erstellen:

https: // www. evidencio.com/registration

Gedruckte Ergebnisse - Beispiele {{ new Date().toLocaleString() }}


Vorteile des Evidencio-Community-Kontos


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Berechnungen allein sollten niemals die Pflege der Patienten vorschreiben und ersetzen kein professionelles Urteilsvermögen.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle Rechte vorbehalten