{{ section.description }}
Yan et al. developed a machine learning-based a decision rule using three key features: LDH, hsCRP, and lymphocyte percentage.
Context information on risk factors:
The increase of LDH reflects tissue/cell destruction and is regarded as a common sign of tissue/cell damage. Serum LDH has been identified as an important biomarker for the activity and severity of Idiopathic Pulmonary Fibrosis (IPF). In patients with severe pulmonary interstitial disease, the increase of LDH is significant and is one of the most important prognostic markers of lung injury. For the critically ill patients with COVID-19, the rise of LDH level indicates an increase of the activity and extent of lung injury.
The analysis performed by Yan et al, showed that higher serum hs-CRP could be used to predict the risk of death in severe COVID-19 patients. The increase of hs-CRP, an important marker for poor prognosis in ARDS, reflects the persistent state of inflammation.
Previous results suggest that lymphocytes play vital role in forecasting of progression from mild to critically ill and may serve as a potential therapeutic target. The hypothesis is supported by the results of clinical studies. Moreover, lymphopenia is a common feature in the patients with COVID-19 and might be a critical factor associated with disease severity and mortality.
Study limitations:
First of all, since the proposed machine learning method is purely data driven, its model may vary given a different set of training and validation dataset. Given the limit number of samples in this study, a balance between model complexity and performance was sought. Yet the whole procedure should follow when more data is available.
Secondly, the performed study was a single-centered, retrospective study, which provides a preliminary assessment of the clinical course and outcome of severe patients.
Source:
Yan et al. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. (Preprint).
Este algoritme se proporciona con fines educativos, formativos e informativos. No debe utilizarse para apoyar la toma de decisiones médicas ni para prestar servicios médicos o de diagnóstico. Lea nuestro disclaimer.
With an Evidencio Community account you can:
A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.
{{ (typeof row === 'object') ? row.label : row }} |
{{ column }} | |
---|---|
{{ row.label }} | {{ value }} |
{{ error }}
Por favor, introduzca una contraseña
Una contraseña debe tener al menos 8 caracteres
Una contraseña no puede tener más de 64 caracteres
Elija una contraseña con al menos una letra mayúscula
Elija una contraseña con al menos un carácter especial (@$!%*#?&)
Por favor, acepte los Términos y Condiciones y el Aviso Legal
Proporcione su dirección de correo electrónico y le enviaremos un enlace para restablecer su contraseña
Dirección de correo electrónico
Por favor, introduzca un correo electrónico válido
Si se registró una cuenta con esta dirección de correo electrónico, recibirá un enlace de recuperación en su correo
Por favor, utiliza el enlace de restablecimiento de contraseña que aparece en él para establecer tu nueva contraseña
¿Aún no has recibido el correo? Por favor, comprueba tu carpeta de spam, o reenviar el correo electrónico