How this model can be applied:
Online prognostic tools such as PREDICT are increasingly used by oncologists in clinical practice to inform patients and support treatment decisions regarding adjuvant, systemic therapy. Validation studies have shown that PREDICT generally provides reasonable to good estimates for overall 5- and 10-year mortality in patients with breast cancer.1-3
Limitations:
Prognostic tools such as PREDICT should be used with caution because of intrinsic variations in outcomes obtained and because the threshold to discuss adjuvant, systemic treatment is low. In a number of subgroups, PREDICT shows under- and overestimates, according to a study published in 2017 by Ellen G. Engelhardt (LUMC) and a group of colleagues from home and abroad.4
Scientific Support:
Several validation studies have been conducted internationally on the performance of PREDICT (see 'validations' tab at www.evidencio.com). In June 2017, a study on the prognostic accuracy of PREDICT was published by Ellen G. Engelhardt and colleagues.4 The researchers collected a consecutive series of 2,710 patients with breast cancer aged 50 years or younger diagnosed between 1990 and 2000. C-statistics were used to estimate calibration accuracy and discriminant accuracy for overall 10-year mortality and breast cancer-specific mortality.
Overall, PREDICT's calibration proved good (predicted versus observed overall mortality). However, PREDICT does tend to underestimate overall mortality (regardless of cause of death) in subgroups with good prognosis (degree of underestimation: -2.9% to -4.8%) and overestimate it in subgroups with poor prognosis (degree of overestimation: 2.6% to 9.4%). In patients up to 35 years of age, PREDICT underestimated overall mortality by 6.6%. Breast cancer-specific mortality was overestimated by PREDICT by 3.2%. The researchers also observed an apparent overestimation of breast cancer-specific mortality in various subgroups (range 3.2% to 14.1%).
References:
Ce algorithme est fourni à des fins d'éducation, de formation et d'information. Il ne doit pas être utilisé pour aider à la prise de décision médicale ou pour fournir des services médicaux ou de diagnostic. Lire l'intégralité de notre disclaimer.
With an Evidencio Community account you can:
A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.
{{ (typeof row === 'object') ? row.label : row }} |
{{ column }} | |
---|---|
{{ row.label }} | {{ value }} |
Veuillez saisir un mot de passe
Un mot de passe doit comporter au moins 8 caractères
Un mot de passe ne peut pas être plus long que 64 caractères.
Choisissez un mot de passe avec au moins une lettre majuscule
Choisissez un mot de passe avec au moins un caractère spécial (@$!%*#?&)
Veuillez accepter les conditions générales et la clause de non-responsabilité
Veuillez fournir votre adresse e-mail et nous vous enverrons un lien pour réinitialiser votre mot de passe.
Adresse email
Veuillez entrer un email valide
Si un compte a été enregistré avec cette adresse e-mail, vous recevrez un lien de récupération dans votre courrier
Veuillez utiliser le lien de réinitialisation du mot de passe contenu dans le mail pour définir votre nouveau mot de passe
Vous n'avez pas encore reçu l'e-mail ? Veuillez vérifier votre dossier spam, ou renvoyer l'email