PREDICT: Survival prediction in patients with breast cancer - Evidencio
PREDICT: Survival prediction in patients with breast cancer
PREDICT is designed to calculate estimates of survival with and without adjuvant treatment to show the predicted benefit of providing specific treatment options. 
Auteurs: Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, Caldas C, Pharoah PD
Versie: 1.7
  • Publiek
  • Oncologie
  • {{ modelType }}
  • Details
  • Valideer algoritme
  • Bewaar invoer
  • Laad invoer
Weergave
Eenheden

{{section.title}}

Bereken het resultaat

Vul meer parameters in om de berekening uit te voeren

Predicted survival is: %

{{ resultSubheader }}
{{ chart.title }}
Resultaat interval {{ additionalResult.min }} tot {{ additionalResult.max }}

Conditionele informatie

How this model can be applied: 
Online prognostic tools such as PREDICT are increasingly used by oncologists in clinical practice to inform patients and support treatment decisions regarding adjuvant, systemic therapy. Validation studies have shown that PREDICT generally provides reasonable to good estimates for overall 5- and 10-year mortality in patients with breast cancer.1-3

Limitations:
Prognostic tools such as PREDICT should be used with caution because of intrinsic variations in outcomes obtained and because the threshold to discuss adjuvant, systemic treatment is low. In a number of subgroups, PREDICT shows under- and overestimates, according to a study published in 2017 by Ellen G. Engelhardt (LUMC) and a group of colleagues from home and abroad.4 

Scientific Support: 
Several validation studies have been conducted internationally on the performance of PREDICT (see 'validations' tab at www.evidencio.com). In June 2017, a study on the prognostic accuracy of PREDICT was published by Ellen G. Engelhardt and colleagues.4 The researchers collected a consecutive series of 2,710 patients with breast cancer aged 50 years or younger diagnosed between 1990 and 2000. C-statistics were used to estimate calibration accuracy and discriminant accuracy for overall 10-year mortality and breast cancer-specific mortality. 

Overall, PREDICT's calibration proved good (predicted versus observed overall mortality). However, PREDICT does tend to underestimate overall mortality (regardless of cause of death) in subgroups with good prognosis (degree of underestimation: -2.9% to -4.8%) and overestimate it in subgroups with poor prognosis (degree of overestimation: 2.6% to 9.4%). In patients up to 35 years of age, PREDICT underestimated overall mortality by 6.6%. Breast cancer-specific mortality was overestimated by PREDICT by 3.2%. The researchers also observed an apparent overestimation of breast cancer-specific mortality in various subgroups (range 3.2% to 14.1%). 

References:

  1. Wishart GC, Azzato EM, Greenberg DC, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12(1):R1.
  2. Wishart GC, Bajdik CD, Dicks E, et al. PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br. J. Cancer 2012;107(5):800-7.
  3. Wishart GC, Rakha E, Green A, et al. Inclusion of KI67 significantly improves performance of the PREDICT prognostication and prediction model for early breast cancer. BMC Cancer. 2014;14:908.
  4. Engelhardt EG, van den Broek AJ, Linn SC, et al. Accuracy of the online prognostication tools PREDICT and Adjuvant! for early-stage breast cancer patients younger than 50 years. Eur J Cancer. 2017;78:37-44.

{{ file.classification }}
PRO
Notitie
Notities zijn alleen zichtbaar in de resultaat download en worden niet opgeslagen door Evidencio

Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.

Onderliggende algoritmes Onderdeel van
Opmerkingen
Opmerking
Vul een opmerking in.
Opmerkingen zijn voor iedereen zichtbaar

Algoritme feedback

Nog geen feedback 1 Opmerking {{ model.comments.length }} Opmerkingen
Op {{ comment.created_at }} {{ comment.user.username }} een niet langer geregistreerde auteur schreef:
{{ comment.content }}
logo

Log a.u.b. in om de Evidencio print-functies te gebruiken

Om de Evidencio print-functies te kunnen gebruiken dient u ingelogt te zijn.
Indien u nog geen Evidencio Community Account heeft kunt u eenvoudig een persoonlijk account aanmaken op:

https://www.evidencio.com/registration

Print rapport - Voorbeelden {{ new Date().toLocaleString() }}


Evidencio Community Account voordelen


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Predictie algoritmes dienen enkel ter ondersteuning en naslag geraadpleegd te worden en zijn geen vervanging voor medische besluitvorming door professionals.
Evidencio v3.35 © 2015 - 2025 Evidencio. Alle rechten voorbehouden