Probability of prostate cancer in Chinese men - Evidencio
Probability of prostate cancer in Chinese men
Prostate health index (PHI) nomogram predicting the probability of prostate cancer in Chinese men with PSA ≤10 ng/mL and normal digital rectal examination (c-index: 0.79).
Autores de la investigación: Zhu Y, Han CT, Zhang GM, Liu F, Ding Q, Xu JF, Vidal AC, Freedland SJ, Ng CF, Ye DW.
Versión: 1.19
  • Público
  • Oncología
  • {{ modelType }}
  • Detalles
  • Validar algoritme
  • Guardar entrada
  • Entrada de carga
Mostrar
Unidades

{{ section.title }}

{{ section.description }}

Calcular el resultado

Establezca más parámetros para realizar el cálculo

Probability of prostate cancer:

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervalo de resultados {{ additionalResult.min }} a {{ additionalResult.max }}

Información condicional

This nomogram provides an objective and quantifiable estimation of cancer risk and offers useful information for consultation. The decision to perform a prostate biopsy not only depends on prostate carcinoma risk, but also on multiple factors, including the patient’s life expectancy, co-morbidity, and preference.

Model performance:
On internal validation using a 200 bootstrap resampled dataset, the nomogram’s corrected AUC was 0.872. The calibration plot showed good correlation between predicted and actual probability. In a separate validation cohort consisting of 230 patients, the AUC of the nomogram was 0.786 (range, 0.678–0.894).

Clinical relevance: 
Zhu et al (2015) simulated clinical decision making by calculating the consequences of applying different criteria in the validation cohort. PSAD biopsy criteria resulted in unnecessary biopsies in 42.6% of cases and missed 28.6% of cancer cases. Using the PHI-nomogram, the authors were able to significantly reduce the number of unnecessary biopsies. For example, at the cutoff of 5%, unnecessary biopsies were reduced to 27% without missing any additional cancer cases.

Reference: Zhu Y, Han CT, Zhang GM, Liu F, Ding Q, Xu JF, Vidal AC, Freedland SJ, Ng CF, Ye DW. Development and external validation of a prostate health index-based nomogram for predicting prostate cancer. Sci Rep. 2015 16;5:15341.


{{ file.classification }}
PRO
Nota
Las notas sólo son visibles en la descarga de resultados y no serán guardadas por Evidencio

Este algoritme se proporciona con fines educativos, formativos e informativos. No debe utilizarse para apoyar la toma de decisiones médicas ni para prestar servicios médicos o de diagnóstico. Lea nuestro disclaimer.

Algoritmer subyacentes Parte de
Comentarios
Comentario
Escriba un comentario
Los comentarios son visibles para cualquiera

Comentarios sobre el algoritme

Aún no hay comentarios 1 comentario {{ model.comments.length }} Comentarios
En {{ comment.created_at }} {{ comment.user.username }} un autor ya no registrado escribió:
{{ comment.content }}
logo

Inicia sesión para activar las funciones de impresión de Evidencio

Para poder utilizar las funciones de impresión de Evidencio, debe estar conectado.
Si no tiene una cuenta de la Comunidad Evidencio puede crear su cuenta personal gratuita en:

https://www.evidencio.com/registration

Resultados impresos - Ejemplos {{ new Date().toLocaleString() }}


Beneficios de la Cuenta Comunitaria Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Descargo de responsabilidad: Los cálculos por sí solos nunca deben dictar la atención al paciente, y no sustituyen al juicio profesional.
Evidencio v3.38 © 2015 - 2025 Evidencio. Todos los derechos reservados