Probability of organ-confined disease in prostate cancer patients - Evidencio
Probability of organ-confined disease in prostate cancer patients
Calculates the probability that the cancer will be found to be confined to the prostate gland when the prostate is removed (c-index: 0.67).

Disqualifying treatments
: This model does not apply to patients who underwent preoperative hormone- or radiation therapy for prostate cancer. 
Les auteurs de la recherche: Source: Memorial Sloan Kettering Cancer Center (US)
Version: 1.10
  • Public
  • Oncologie
  • {{ modelType }}
  • Détails
  • Valider le algorithme
  • Sauvegarder l'entrée
  • Entrée de la charge
Affichage
Unités

{{ section.title }}

{{ section.description }}

Calculer le résultat

Définir d'autres paramètres pour effectuer le calcul

Probability of organ-confined disease:

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervalle de résultats {{ additionalResult.min }} à {{ additionalResult.max }}

Informations conditionnelles

How this model should be used:
This model calculates the probability that the cancer will be found to be confined to the prostate gland when the prostate is removed. This model does not apply to patients who underwent preoperative hormone- or radiation therapy for prostate cancer. 

Result interpretation: 
A low probability of organ-confined disease does not necessarily mean that surgery cannot cure the cancer. About 50 percent of patients who do not have organ-confined cancer have long-term freedom from recurrence following surgery. The probability of having organ-confined prostate cancer is not equal to the probability that surgery will provide long-term freedom from recurrence, because the cancer does not have to be organ confined to be successfully treated with surgery.

Model performance: 
A validation was performed to assess the discriminative power of the model. On the website of the MSKCC, a c-index of 0.67 is reported. No specific details regarding the validation process are disclosed.

Alternative models: 
For cases in which the number of cores taken at biopsy is known, an alternative prediction model including this information is available that provides more refined predictions (c-index 0.71 versus 0.67, respectively).


Source: Memorial Sloan Kettering Cancer Center.
 

{{ file.classification }}
PRO
Note
Les notes ne sont visibles que dans le téléchargement des résultats et ne sont pas sauvegardées par Evidencio.

Ce algorithme est fourni à des fins d'éducation, de formation et d'information. Il ne doit pas être utilisé pour aider à la prise de décision médicale ou pour fournir des services médicaux ou de diagnostic. Lire l'intégralité de notre disclaimer.

Algorithmes sous-jacents Une partie de
Commentaires
Commentaire
Veuillez saisir un commentaire
Les commentaires sont visibles par tous

Retour d'information sur le algorithme

Pas encore de retour d'information 1 Commentaire {{ model.comments.length }} Commentaires
Sur {{ comment.created_at }} {{ comment.user.username }} un auteur qui n'est plus enregistré a écrit :
{{ comment.content }}
logo

Veuillez vous connecter pour activer les fonctions d'impression d'Evidencio

Pour utiliser les fonctions d'impression d'Evidencio, vous devez être connecté.
Si vous n'avez pas de compte communautaire Evidencio, vous pouvez créer un compte personnel gratuit à:

https://www.evidencio.com/registration

Résultats imprimés - Exemples {{ new Date().toLocaleString() }}


Avantages du compte communautaire Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Clause de non-responsabilité : les calculs ne doivent jamais dicter les soins aux patients et ne remplacent pas le jugement d'un professionnel.
Evidencio v3.38 © 2015 - 2025 Evidencio. Tous droits réservés