Probability of biopsy-detectable prostate cancer (PCPTRC 1.0) - Evidencio
Probability of biopsy-detectable prostate cancer (PCPTRC 1.0)
Calculates the probability of biopsy-detectable prostate cancer according to the prostate cancer prevention trial risk calculator 1.0 (c-index: 0.70). 

Note: This model is only applicable for persons without a previous diagnosis of prostate cancer.
Autori della ricerca: Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, Feng Z, Parnes HL, Coltman CA Jr.
Versione: 1.40.{{ model.microversion }}
  • Pubblico
  • Oncologia
  • {{ modelType }}
  • Algoritmo
  • Dettagli
  • Convalidare
  • Salvare l'input
  • Ingresso di carico
  • {{ toolbarErrorMessage }}

Display
Unità

{{ section.title }}

{{ section.description }}

Calcolare il risultato

Impostare altri parametri per eseguire il calcolo

Probability of biopsy-detectable prostate cancer:

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervallo di risultati {{ additionalResult.min }} a {{ additionalResult.max }}

Informazioni condizionali

Il tuo testo è stato modificato. Aggiorna il risultato. Aggiornare

This predictive model allows an individualized assessment of prostate cancer risk and risk of high-grade disease for men who undergo a prostate biopsy. No specific level of risk is recommended for prostate biopsy and this decision should be an individual choice based upon a physician-patient relationship.

Applicability of the model:  
Most men in the underlying study by Thompson et al (2006) were white and results may be different with other ethnicities or races. The calculator is in principle only applicable to men under the following restrictions:

  • Age 55 or older
  • No previous diagnosis of prostate cancer
  • DRE and PSA results less than 1 year old

Model performance: 
The average out-of-sample discriminative power (c-index) for the model by Thompson et al (2006) was 0.70. 

Modification of the PCPTRC:
In 2012, the updated PCPTRC 2.0 was released with the added capability to provide prediction of low-grade (Gleason grade < 7) versus high-grade prostate cancer. PCPTRC 2.0 was based on re-analysis of an expanded set of 6664 biopsies from 5826 patients from the PCPT placebo arm. Characteristics of the patients and biopsies forming PCPTRC 2.0 are similar to those used for the original PCPTRC, but the new PCPTRC 2.0 generally provides lower risk estimates due to the inclusion of multiple prior negative biopsies per individual rather than just one biopsy per person. 

{{ file.classification }}
PRO
Nota
Le note sono visibili solo nel download dei risultati e non vengono salvate da Evidencio.

Questo algoritmo viene fornito a scopo educativo, formativo e informativo. Non deve essere utilizzato a supporto di decisioni mediche o per fornire servizi medici o diagnostici. Leggete il nostro sito completo disclaimer.

Algoritmi sottostanti Parte di
Commenti
Commento
Inserisci un commento
I commenti sono visibili a chiunque

Feedback del algoritmo

Ancora nessun feedback 1 Commento {{ model.comments.length }} Commenti
Su {{ comment.created_at }} {{ comment.user.username }} un autore non più registrato ha scritto:
{{ comment.content }}
logo

Effettuare l'accesso per abilitare le funzionalità di stampa di Evidencio

Per utilizzare le funzioni di stampa di Evidencio, è necessario aver effettuato il login.
Se non si dispone di un account comunitario Evidencio, è possibile creare un account personale gratuito all'indirizzo:

https://www.evidencio.com/registration

Risultati stampati - Esempi {{ new Date().toLocaleString() }}


Vantaggi del conto comunitario Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Esclusione di responsabilità: i calcoli da soli non dovrebbero mai dettare la cura del paziente e non sostituiscono il giudizio professionale.