3-year overall survival in patients with resected non–small-cell lung can - Evidencio
3-year overall survival in patients with resected non–small-cell lung cancer
Because NSCLC is remarkably heterogeneous in regard to survival of individual patients, prediction of survival using the TNM staging system is imprecise. This postoperative nomogram was developed to predict 3-year overall survival of operable patients.
Autores de la investigación: Liang W, Zhang L, Jiang G, Wang Q, Liu L, Liu D, Wang Z, Zhu Z, Deng Q, Xiong X, Shao W, Shi X, He J.
Versión: 1.10
  • Público
  • Oncología
  • {{ modelType }}
  • Detalles
  • Validar algoritme
  • Guardar entrada
  • Entrada de carga
Mostrar
Unidades

{{ section.title }}

{{ section.description }}

Calcular el resultado

Establezca más parámetros para realizar el cálculo

Predicted 3-year survival:

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervalo de resultados {{ additionalResult.min }} a {{ additionalResult.max }}

Información condicional

How this model should be used: 
Liang et al (2015) established and validated a novel nomogram for predicting survival of patients with resected NSCLC.1 Through this model, clinicians could more precisely estimate the 3-year overall survival of individual patients after surgery and identify subgroups of patients who are in need of a specific treatment strategy.

Model performance: 
The calibration plots presented an excellent agreement in the primary cohort (N=5,261) and an acceptable agreement in the IASLC validation cohort (N=2,148) between the nomogram prediction and actual observation for 3-year overall survival (OS). The discriminative power (c-index) for the nomogram to predict OS (0.71; 95% CI, 0.70 to 0.72) was significantly higher than that of the TNM staging system (0.68; 95% CI, 0.67 to 0.69; P < 0.01). In the validation cohort, the reported c-index was 0.67 (95% CI, 0.65 to 0.69). 

Source: 
1 Liang W, Zhang L, Jiang G et al. Development and validation of a nomogram for predicting survival in patients with resectednon-small-cell lung cancer. J Clin Oncol. 2015;33(8):861-9.

{{ file.classification }}
PRO
Nota
Las notas sólo son visibles en la descarga de resultados y no serán guardadas por Evidencio

Este algoritme se proporciona con fines educativos, formativos e informativos. No debe utilizarse para apoyar la toma de decisiones médicas ni para prestar servicios médicos o de diagnóstico. Lea nuestro disclaimer.

Algoritmer subyacentes Parte de
Comentarios
Comentario
Escriba un comentario
Los comentarios son visibles para cualquiera

Comentarios sobre el algoritme

Aún no hay comentarios 1 comentario {{ model.comments.length }} Comentarios
En {{ comment.created_at }} {{ comment.user.username }} un autor ya no registrado escribió:
{{ comment.content }}
logo

Inicia sesión para activar las funciones de impresión de Evidencio

Para poder utilizar las funciones de impresión de Evidencio, debe estar conectado.
Si no tiene una cuenta de la Comunidad Evidencio puede crear su cuenta personal gratuita en:

https://www.evidencio.com/registration

Resultados impresos - Ejemplos {{ new Date().toLocaleString() }}


Beneficios de la Cuenta Comunitaria Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Descargo de responsabilidad: Los cálculos por sí solos nunca deben dictar la atención al paciente, y no sustituyen al juicio profesional.
Evidencio v3.38 © 2015 - 2025 Evidencio. Todos los derechos reservados