Formula | No Formula defined yet |
---|
Condition | Formula |
---|
Additional information
Study population:Patients were selected from the Netherlands Cancer Registry (NCR), a nationwide population-based registry, which records all newly diagnosed tumours since 1989. Women diagnosed with primary invasive breast cancer between 2003 and 2006 without distant metastasis, previous, or synchronous tumours (diagnosed within 3 months after the first tumour, treated with curative intent and without neo-adjuvant systemic treatment were selected from the registry (N = 37,230).
Model development:
Variables were selected based on literature and availability of the data. Patient, tumour and treatment characteristics were assessed for their influence on recurrence risk using multivariable binary logistic regression analysis. Firstly, a prediction model for the 5-year LRR risk was developed. Secondly, risks were determined per year conditional on not being diagnosed with recurrence in the previous year(s).
Source:
Witteveen A, Vliegen IM, Sonke GS et al. Personalisation of breast cancer follow-up: a time-dependent prognostic nomogram for the estimation of annual risk of locoregional recurrence in early breast cancer patients. Breast Cancer Res Treat. 2015; 152(3): 627–636.
Study Population
Total population size: 37230Categorical characteristics
Name | Subset / Group | Nr. of patients |
---|---|---|
Leeftijdscategorie | <50 jaar | 9779 |
50-59 jaar | 10601 | |
60-69 jaar | 8421 | |
≥70 jaar | 8477 | |
Histologisch type | Ductaal | 29582 |
Lobulair | 4000 | |
Gemixed | 1552 | |
Anders | 2144 | |
Differentiatiegraad | Graad I | 7628 |
Graad II | 15595 | |
Graad III | 11479 | |
Onbekend | 2576 | |
Tumor grootte | ≤2 cm | 22611 |
2-5 cm | 13243 | |
>5 cm | 1094 | |
Onbekend | 330 | |
Multifocaal | Nee | 23237 |
Ja | 4168 | |
Onbekend | 9873 | |
Lymfeklier status | Negatief | 22516 |
1-3 positieve klieren | 10093 | |
>3 positieve klieren | 4119 | |
Onbekend | 550 | |
Oestrogeen receptor status | Negatief | 5417 |
Positief | 23433 | |
Onbekend | 8428 | |
Progesteron receptor status | Negatief | 9580 |
Positief | 18877 | |
Onbekend | 8821 | |
Her2-neu status | Negative | 13832 |
Positive | 2405 | |
Unknown | 21041 | |
Aantal verrichte operaties | 1 | 33136 |
2 | 3909 | |
≥3 | 233 | |
Type chirurgie | Mammasparend | 21049 |
Niet mammasparend | 16229 | |
Tijd tot laatste OK | <30 dagen | 27579 |
30-60 dagen | 8205 | |
>60 dagen | 1494 | |
Axillaire lymfeklier dissectie | Nee | 18397 |
Ja | 18881 | |
Chemotherapie | Nee | 23886 |
Ja | 13392 | |
Radiotherapie | Nee | 12783 |
Ja | 24495 | |
Hormoon therapie | Nee | 21696 |
Ja | 15582 |
|
INFLUENCE: risico op locoregionaal recidief bij patiënten met borstkanker in jaar 3 |
|
V-1.10-774.20.03.06 |
|
Refer to Intended Use for instructions before use |
|
Evidencio B.V., Irenesingel 19, 7481 GJ, Haaksbergen, the Netherlands |
Related files
Preview | Name | Tags |
---|---|---|
![]() |
624.62 kB | Paper Peer review |
![]() |
3.33 kB | Institute logo |
![]() |
57.54 kB | Institute logo |
Supporting Publications
Title or description | Tags |
---|---|
Originele studie: Personalisation of breast cancer follow-up: a time-dependent prognostic nomogram for the estimation of annual risk of locoregional recurrence in early breast cancer patients (Witteveen et al, 2015). | External validation Internal validation Paper Peer review |
Het risico op een lokaal recidief in jaar 3 bedraagt: ...
{{ model.survival.PITTitle }}
{{ model.survival.YNETitle }}
Het risico op een lokaal recidief in jaar 3 bedraagt:
Outcome stratification
Conditional information
Result interpretation
Beoogde toepassing INFLUENCE predictiemodel:
Dit model kan worden ingezet als instrument om borstkanker patiënten met een hoog risico op een locoregionaal recidief te identificeren. Op basis hiervan kan een inschatting worden gemaakt ten aanzien van de gewenste intensitieit van follow-up.
Model prestaties:
Het oppervlak onder de ROC-curve bleek bij externe validatie 0.70 te bedragen. De discriminatie van het model wordt daarmee adequaat geacht.
Bron:
Witteveen A, Vliegen IM, Sonke GS et al. Personalisation of breast cancer follow-up: a time-dependent prognostic nomogram for the estimation of annual risk of locoregional recurrence in early breast cancer patients. Breast Cancer Res Treat. 2015; 152(3): 627–636.
Calculations alone should never dictate patient care, and are no substitute for professional judgement. See our full disclaimer.
Model feedback
No feedback yet 1 Comment {{ model.comments.length }} CommentsValidation cohort size: 12308
C-Index: Not specified
Validation author: Dr. R.G. Pleijhuis
Revision date:
Sign In
Sign Up
With an Evidencio Community account you can:
- Create and publish your own prediction models.
- Share your prediction models with your colleagues, research group, organization or the world.
- Review and provide feedback on models that have been shared with you.
- Validate your models and validate models from other users.
- Find models based on Title, Keyword, Author, Institute, or MeSH classification.
- Use and save prediction models and their data.
- Use patient specific protocols and guidelines based on sequential models and decision trees.
- Stay up-to-date with new models in your field as they are published.
- Create your own lists of favorite models and topics.

Please sign in to enable Evidencio print features
If you don't have an Evidencio Community Account you can create your free personal account at:
https://www.evidencio.com/registration
Printed results - Examples {{ new Date().toLocaleString() }}

Evidencio Community Account Benefits
With an Evidencio Community account you can:
- Create and publish your own prediction models.
- Share your prediction models with your colleagues, research group, organization or the world.
- Review and provide feedback on models that have been shared with you.
- Validate your models and validate models from other users.
- Find models based on Title, Keyword, Author, Institute, or MeSH classification.
- Use and save prediction models and their data.
- Use patient specific protocols and guidelines based on sequential models and decision trees.
- Stay up-to-date with new models in your field as they are published.
- Create your own lists of favorite models and topics.
{{ variable.title }}
{{ row }} |