Tweetraps benadering van onderzoek naar bewustzijn op de intensive care (RASS + CAM-ICU)
Deze tweetraps benadering biedt de zorgprofessional handvatten bij het beoordelen van de eventuele aanwezigheid van een delier bij patiënten op de intensive care (IC) afdeling. 
General details Underlying models
Model author
Version
1.25
Revision date
2017-10-04
Medical specialty
MeSH terms
  • Delirium
  • Deep Sedation
  • Moderate Sedation
  • Conscious Sedation
  • Nursing Assessments
  • Status
    public
    Share
    Vaststelling mate van sedatie met de Richmond Agitatie en Sedatie schaal (RASS)
    Research authors: Elly et al, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, Francis J, Speroff T, Gautam S, Margolin R, Sessler CN, Dittus RS, Bernard GR.
    Vroegtijdige herkenning van delirium op de intensive care met de Confusion Assessment Method (CAM-ICU)
    Research authors: Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI

    {{ resultSubheader }}

    {{ variable.title }}

    {{ model.survival.PITTitle }}

    {{ model.survival.YNETitle }}

    Results

    Composite model

    Conditional information

    Result interpretation

    Calculations alone should never dictate patient care, and are no substitute for professional judgement. See our full disclaimer.

    Comments

    Model feedback

    No feedback yet
    logo

    Please sign in to enable Evidencio print features

    In order to use the Evidencio print features, you need to be logged in.
    If you don't have an Evidencio Community Account you can create your free personal account at:

    https://www.evidencio.com/registration

    Printed results - Examples {{ new Date().toLocaleString()}}


    Evidencio Community Account Benefits


    With an Evidencio Community account you can:

    • Create and publish your own prediction models.
    • Share your prediction models with your colleagues, research group, organization or the world.
    • Review and provide feedback on models that have been shared with you.
    • Validate your models and validate models from other users.
    • Find models based on Title, Keyword, Author, Institute, or MeSH classification.
    • Use and save prediction models and their data.
    • Stay up-to-date with new models in your field as they are published.
    • Create your own lists of favorite models and topics.
    A personal Evidencio account is free, with no strings attached! Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.

    Disclaimer: Calculations alone should never dictate patient care, and are no substitute for professional judgement.