5-jaars overleving borstkanker na chirurgie, hormoontherapie & chemotherapie (PREDICT versie 2.0)
Prognostisch instrument bedoeld om patiënten te informeren en om behandelbesluiten over adjuvante, systemische therapie te ondersteunen.
Research authors: Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, Caldas C, Pharoah PD
Details Formula Study characteristics Files & References
Model author
Model ID
Revision date
MeSH terms
  • Clinical Oncology
  • Breast Cancer
  • Nomogram
  • Model type
    R-Script model (Calculation)
    No Formula defined yet
    Condition Formula

    Additional information

    Predict 1.2 refitting information, derived from http://www.predict.nhs.uk/technical.html#refit:

    Model re-fitting (version 2.0)
    While the overall fit of the model PREDICT version 1.2 has been good in multiple independent case series, PREDICT has been shown to underestimate breast cancer specific mortality in women diagnosed under the age of 40, particularly those with ER positive disease. Another limitation of PREDICT version 1.2 is the use of discrete categories for tumour size and node status, which result in “step” changes in risk estimates on moving from one category to the next. For example, a woman with an 18 mm or 19 mm tumour will be predicted to have the same breast cancer specific mortality if all the other prognostic factors are the same whereas breast cancer specific morality of women with a 19 mm or 20 mm tumour will differ. Therefore, the PREDICT prognostic model was refitted using the original cohort of cases from East Anglia with updated survival time in order to take into account age at diagnosis and to smooth out the survival function for tumour size and node status. The fit of the refitted model (version 2.0) has been tested in three independent data sets that had also been used to validate the original version of PREDICT.

    Model performance: 
    PREDICT v1.2 over-estimated the number of breast cancer deaths by 10 per cent (observed 447 compared to 492 predicted). This over-estimation was most notable in the larger tumours and in the high-grade tumours. In contrast, the calibration of PREDICT version 2.0 in ER negative cases was excellent to good (predicted 449).
    The calibration of both PREDICT version 1.2 and PREDICT version 2.0 was good in ER positive cases (observed breast cancer deaths 633 compared to 643 (version 1.2) and 634 (version 2.0) predicted). However, as previously described, PREDICT version 1.2 significantly under-estimated breast cancer specific mortality in women diagnosed with ER positive disease at younger ages, whereas the fit of PREDICT version 2.0 was good in all age groups.

    Study Population

    Total population size: 0

    Additional characteristics

    No additional characteristics defined
    5-jaars overleving borstkanker na chirurgie, hormoontherapie & chemotherapie (PREDICT versie 2.0)
    Refer to Intended Use for instructions before use
    Evidencio B.V., Irenesingel 19, 7481 GJ, Haaksbergen, the Netherlands

    5-jaars overleving borstkanker na chirurgie, hormoontherapie & chemotherapie:

    {{ resultSubheader }}

    {{ model.survival.PITTitle }}

    {{ model.survival.YNETitle }}

    Notes are only visible in the result download and will not be saved by Evidencio

    5-jaars overleving borstkanker na chirurgie, hormoontherapie & chemotherapie: %

    {{ resultSubheader }}
    {{ chart.title }}

    Outcome stratification

    Result interval {{ additionalResult.min }} to {{ additionalResult.max }}

    Conditional information

    Result interpretation

    Hoe dit model kan worden toegepast: 
    Online prognostische instrumenten zoals PREDICT worden door oncologen steeds vaker gebruikt in de klinische praktijk om patiënten te informeren en om behandelbesluiten over adjuvante, systemische therapie te ondersteunen. Validatiestudies hebben aangetoond dat PREDICT over het algemeen redelijke tot goede ramingen geeft voor de algehele 5- en 10-jaarssterfte bij patiënten met borstkanker.1-3

    Prognostische instrumenten als PREDICT dienen voorzichtig gehanteerd te worden wegens intrinsieke variaties van verkregen uitkomsten en omdat de drempel om adjuvante, systemische behandeling te bespreken laag is. Bij een aantal subgroepen vertoont PREDICT onder- en overschattingen, zo blijkt uit een in 2017 gepubliceerd onderzoek van Ellen G. Engelhardt (LUMC) en een groep collega’s uit binnen- en buitenland.4 

    Wetenschappelijke onderbouwing
    Internationaal zijn verscheidene validatiesstudies verricht naar de prestaties van PREDICT (zie tabblad 'validaties' op www.evidencio.com). In juni 2017 werd door Ellen G. Engelhardt en collega’s een studie gepubliceerd naar de prognostische nauwkeurigheid van PREDICT.4 De onderzoekers verzamelden een opeenvolgende reeks van 2.710 patiënten met borstkanker in de leeftijd van 50 jaar of jonger gediagnosticeerd tussen 1990 en 2000. Met C-statistieken werd de nauwkeurigheid van de kalibratie en discriminatoire nauwkeurigheid geschat voor de algehele 10-jaarssterfte en borstkankerspecifieke sterfte. 

    Over het algemeen bleek de kalibratie van PREDICT goed (voorspelde versus waargenomen algehele sterfte). PREDICT heeft echter wel de neiging om de algehele sterfte (ongeacht de doodsoorzaak) te onderschatten in subgroepen met een goede prognose (mate van onderschatting: -2,9% tot -4,8%) en te overschatten in subgroepen met een slechte prognose (mate van overschatting: 2,6% tot 9,4%). Bij patiënten tot 35 jaar onderschat PREDICT de algehele sterfte met 6,6%. De borstkankerspecifieke sterfte wordt door PREDICT overschat met 3,2%. Ook zagen de onderzoekers een schijnbare overschatting van de borstkankerspecifieke sterfte in diverse subgroepen (range 3,2% tot 14,1%). 


    1. Wishart GC, Azzato EM, Greenberg DC, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12(1):R1.
    2. Wishart GC, Bajdik CD, Dicks E, et al. PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br. J. Cancer 2012;107(5):800-7.
    3. Wishart GC, Rakha E, Green A, et al. Inclusion of KI67 significantly improves performance of the PREDICT prognostication and prediction model for early breast cancer. BMC Cancer. 2014;14:908.
    4. Engelhardt EG, van den Broek AJ, Linn SC, et al. Accuracy of the online prognostication tools PREDICT and Adjuvant! for early-stage breast cancer patients younger than 50 years. Eur J Cancer. 2017;78:37-44.

    {{ file.classification }}

    Calculations alone should never dictate patient care, and are no substitute for professional judgement. See our full disclaimer.

    Please enter a comment of rating
    Comments are visible to anyone

    Model feedback

    No feedback yet 1 Comment {{ model.comments.length }} Comments
    Not rated | On {{ comment.created_at }} {{ comment.user.username }} a no longer registered author wrote:

    Please sign in to enable Evidencio print features

    In order to use the Evidencio print features, you need to be logged in.
    If you don't have an Evidencio Community Account you can create your free personal account at:


    Printed results - Examples {{ new Date().toLocaleString() }}

    Evidencio Community Account Benefits

    With an Evidencio Community account you can:

    • Create and publish your own prediction models.
    • Share your prediction models with your colleagues, research group, organization or the world.
    • Review and provide feedback on models that have been shared with you.
    • Validate your models and validate models from other users.
    • Find models based on Title, Keyword, Author, Institute, or MeSH classification.
    • Use and save prediction models and their data.
    • Use patient specific protocols and guidelines based on sequential models and decision trees.
    • Stay up-to-date with new models in your field as they are published.
    • Create your own lists of favorite models and topics.
    A personal Evidencio account is free, with no strings attached! Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.

    Disclaimer: Calculations alone should never dictate patient care, and are no substitute for professional judgement.