3-year survival after resection in patients with pancreatic cancer - Evidencio
3-year survival after resection in patients with pancreatic cancer
An update of the current model is available by clicking this link

Predicts 3-year survival after resection in patients with pancreatic cancer based on lymph node ratio. This model includes the number of lymph nodes with metastases in relation to the total number of removed lymph nodes, the lymph node ratio (LNR), as one of the most powerful predictors of survival.
Autori della ricerca: Toll, JAMG, Brosens, LAA, van DIeren S, van Gulik TM, Busch ORC, Besselink MGH, and Gouma Dj.
Versione: 1.24
  • Pubblico
  • Chirurgia
  • {{ modelType }}
  • Dettagli
  • Convalida del algoritmo
  • Salvare l'input
  • Ingresso di carico
Display
Unità

{{ section.title }}

{{ section.description }}

Calcolare il risultato

Impostare altri parametri per eseguire il calcolo

Estimated 3-years survival after pancreatoduodenectomy: %

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervallo di risultati {{ additionalResult.min }} a {{ additionalResult.max }}

Informazioni condizionali

How this model should be used: 
This model calculates 3-year survival after resection in patients with pancreatic cancer. The value of the model needs to be confirmed in independent study populations.

Lymph node ratio: 
Lymph node ratio (LNR) was identified as a strong predictor of survival in patients with pancreatic cancer. LNR is calculated by dividing the number of positive lymph nodes by the total number of lymph nodes. The optimal cut-off value for LNR was 0.18. In patients with a LNR of 0.18 or less, median survival was 26 months versus 16 months in patients with a LNR greater than 0.18 (P <0001).

Model performance:
Predictive factors for death in patients (n=350) with pancreatic ductal adenocarcinoma included in the nomogram were: R1 resection (hazard ratio (HR) 1.55, 95% CI: 1.07 to 2.25), poor tumour differentiation (HR 2.78, 1.40 to 5.52), LNR above 0.18 (HR 1.75, 1.13 to 2.70) and no adjuvant therapy (HR 1.54, 1.01 to 2.34). The C-statistic was 0.658 (0.632 to 0.698), and calibration was good (Hosmer–Lemeshow χ2 =5.67, P=0.773).

Source: 
Tol JA, Brosens LA, van Dieren S, et al. Impact of lymph node ratio on survival in patients with pancreatic and periampullary cancer. Br J Surg. 2015;102(3):237-45.

{{ file.classification }}
PRO
Nota
Le note sono visibili solo nel download dei risultati e non vengono salvate da Evidencio.

Questo algoritmo viene fornito a scopo educativo, formativo e informativo. Non deve essere utilizzato a supporto di decisioni mediche o per fornire servizi medici o diagnostici. Leggete il nostro sito completo disclaimer.

Algoritmi sottostanti Parte di
Commenti
Commento
Inserisci un commento
I commenti sono visibili a chiunque

Feedback del algoritmo

Ancora nessun feedback 1 Commento {{ model.comments.length }} Commenti
Su {{ comment.created_at }} {{ comment.user.username }} un autore non più registrato ha scritto:
{{ comment.content }}
logo

Effettuare l'accesso per abilitare le funzionalità di stampa di Evidencio

Per utilizzare le funzioni di stampa di Evidencio, è necessario aver effettuato il login.
Se non si dispone di un account comunitario Evidencio, è possibile creare un account personale gratuito all'indirizzo:

https://www.evidencio.com/registration

Risultati stampati - Esempi {{ new Date().toLocaleString() }}


Vantaggi del conto comunitario Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Esclusione di responsabilità: i calcoli da soli non dovrebbero mai dettare la cura del paziente e non sostituiscono il giudizio professionale.
Evidencio v3.38 © 2015 - 2025 Evidencio. Tutti i diritti riservati