INFLUENCE: risico op locoregionaal recidief bij patiënten met borstkanker in jaar 5
Berekent het risico op een locoregionaal recidief (LRR) bij patiënten met borstkanker in jaar 5 (c-index: 0.62).
Research authors: Annemieke Witteveen, Ingrid M. Vliegen, Gabe S. Sonke, Joost M. Klaase, Maarten J. IJzerman, Sabine Siesling
Details Formula Study characteristics Files & References
★★★★
Model author
Model ID
705
Version
1.14
Revision date
2020-03-06
Specialty
MeSH terms
  • Breast Cancer
  • Locoregional Neoplasm Recurrence
  • Model type
    Logistic regression (Calculation)
    Status
    public
    Rating
    Share
    Formula
    No Formula defined yet
    Condition Formula

    Additional information

    Onderzoekspopulatie:
    Patiënten werden geselecteerd uit de Nederlandse Kankerregistratie (NKR), een landelijk bevolkingsregister, dat alle nieuw gediagnosticeerde tumoren registreert sinds 1989. Vrouwen gediagnosticeerd met primaire invasieve borstkanker tussen 2003 en 2006 zonder metastasen op afstand, vorige of synchrone tumoren (gediagnosticeerd binnen 3 maanden na de eerste tumor, behandeld met curatieve intentie en zonder neo-adjuvante systemische behandeling werden geselecteerd uit de NKR (N = 37,230).

    Model ontwikkeling:
    Variabelen werden geselecteerd op basis van literatuur en beschikbaarheid van de gegevens. Patiënt, tumor en behandelkarakteristieken werden beoordeeld op hun invloed op het risico van herhaling met behulp van multivariabele binaire logistische regressie-analyse. Eerst werd een predictiemodel voor het 5-jarige LRR-risico ontwikkeld. Ten tweede werden de risico's per jaar bepaald, afhankelijk van het feit dat er in de voorgaande jaren geen recidief werd gediagnosticeerd.

    Bron:
    Witteveen A, Vliegen IM, Sonke GS et al. Personalisation of breast cancer follow-up: a time-dependent prognostic nomogram for the estimation of annual risk of locoregional recurrence in early breast cancer patients. Breast Cancer Res Treat. 2015; 152(3): 627–636.

    Study Population

    Total population size: 37230
    Males: {{ model.numberOfMales }}
    Females: {{ model.numberOfFemales }}

    Categorical characteristics

    Name Subset / Group Nr. of patients
    Leeftijdscategorie <50 jaar 9779
    50-59 jaar 10601
    60-69 jaar 8421
    ≥70 jaar 8477
    Histologisch type Ductaal 29582
    Lobulair 4000
    Gemixed 1552
    Anders 2144
    Differentiatiegraad Graad I 7628
    Graad II 15595
    Graad III 11479
    Onbekend 2576
    Tumor grootte ≤2 cm 22611
    2-5 cm 13243
    >5 cm 1094
    Onbekend 330
    Multifocaal Nee 23237
    Ja 4168
    Onbekend 9873
    Lymfeklierstatus Negatief 22516
    1-3 positief 10093
    >3 positief 4119
    Onbekend 550
    Oestrogeen receptor status Negatief 5417
    Positief 23433
    Onbekend 8428
    Progesteron receptor status Negatief 9580
    Positief 18877
    Onbekend 8821
    Her2-neu status Negatief 13832
    Positief 2405
    Onbekend 21041
    Aantal verrichte operaties 1 33136
    2 3909
    ≥3 233
    Type chirurgie Mammasparend 21049
    Niet mammasparend 16229
    Tijd tot laatste OK <30 dagen 27579
    30-60 dagen 8205
    >60 dagen 1494
    Axillaire lymfeklier dissectie Nee 18397
    Ja 18881
    Chemotherapie Nee 23886
    Ja 13392
    Radiotherapie Nee 12783
    Ja 24495
    Hormoontherapie Nee 21696
    Ja 15582
    INFLUENCE: risico op locoregionaal recidief bij patiënten met borstkanker in jaar 5
    V-1.14-705.20.03.06
    Refer to Intended Use for instructions before use
    Evidencio B.V., Irenesingel 19, 7481 GJ, Haaksbergen, the Netherlands

    Related files

    Het risico op een lokaal recidief in jaar 5 bedraagt:
    ...

    {{ resultSubheader }}

    {{ model.survival.PITTitle }}

    {{ model.survival.YNETitle }}

    Result
    Note
    Notes are only visible in the result download and will not be saved by Evidencio

    Het risico op een lokaal recidief in jaar 5 bedraagt:

    {{ resultSubheader }}
    {{ chart.title }}

    Outcome stratification

    Result interval {{ additionalResult.min }} to {{ additionalResult.max }}

    Conditional information

    Result interpretation

    Beoogde toepassing INFLUENCE predictiemodel: 
    Dit model kan worden ingezet als instrument om borstkanker patiënten met een hoog risico op een locoregionaal recidief te identificeren. Op basis hiervan kan een inschatting worden gemaakt ten aanzien van de gewenste intensitieit van follow-up. 

    Model prestaties: 
    Het oppervlak onder de ROC-curve bleek bij externe validatie 0.62 te bedragen. De discriminatie van het model wordt daarmee matig geacht. 

    Bron: 
    Witteveen A, Vliegen IM, Sonke GS et al. Personalisation of breast cancer follow-up: a time-dependent prognostic nomogram for the estimation of annual risk of locoregional recurrence in early breast cancer patients. Breast Cancer Res Treat. 2015; 152(3): 627–636.

    {{ file.classification }}

    Calculations alone should never dictate patient care, and are no substitute for professional judgement. See our full disclaimer.

    Comments
    Rating
    Comment
    Please enter a comment of rating
    Comments are visible to anyone

    Model feedback

    No feedback yet 1 Comment {{ model.comments.length }} Comments
    Not rated | On {{ comment.created_at }} {{ comment.user.username }} a no longer registered author wrote:
    logo

    Please sign in to enable Evidencio print features

    In order to use the Evidencio print features, you need to be logged in.
    If you don't have an Evidencio Community Account you can create your free personal account at:

    https://www.evidencio.com/registration

    Printed results - Examples {{ new Date().toLocaleString() }}


    Evidencio Community Account Benefits


    With an Evidencio Community account you can:

    • Create and publish your own prediction models.
    • Share your prediction models with your colleagues, research group, organization or the world.
    • Review and provide feedback on models that have been shared with you.
    • Validate your models and validate models from other users.
    • Find models based on Title, Keyword, Author, Institute, or MeSH classification.
    • Use and save prediction models and their data.
    • Use patient specific protocols and guidelines based on sequential models and decision trees.
    • Stay up-to-date with new models in your field as they are published.
    • Create your own lists of favorite models and topics.
    A personal Evidencio account is free, with no strings attached! Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.

    Disclaimer: Calculations alone should never dictate patient care, and are no substitute for professional judgement.